探索可持续投资的文本挖掘利器:ESG-BERT
项目地址:https://gitcode.com/gh_mirrors/es/ESG-BERT
项目介绍
在金融领域的可持续投资(Environmental, Social, and Governance,简称ESG)中,文本挖掘成为评估企业社会责任与投资价值的重要工具。ESG-BERT 是一个专为这一领域设计的预训练模型,它结合了BERT的强大能力,并针对可持续投资语料进行进一步的预训练,从而提供更精确的文本分析结果。
该项目由 Charan Pothireddi 和 Parabole.ai 联合开发,旨在帮助数据科学家和研究员轻松地在ESG相关任务上实现深度学习模型的快速应用和定制。
项目技术分析
ESG-BERT 基于BERT基础模型并进行了专项优化。通过在大量与可持续投资相关的文本数据集上进行预训练,该模型可以更好地理解和处理与ESG相关的关键信息。模型以PyTorch实现,但可以转换成TensorFlow版本,适用于不同框架的开发需求。
用户可以通过Hugging Face Hub获取预训练模型,并使用以下代码加载到PyTorch环境中进行微调:
model = BertForSequenceClassification.from_pretrained(
'path/to/dir/containing/ESG-BERT',
num_labels = num, # 分类数目
output_attentions = False,
output_hidden_states = False
)
model.to(device)
项目及技术应用场景
ESG-BERT 可广泛应用于以下场景:
- ESG评分预测:自动评估企业的环境、社会和治理表现。
- 新闻情感分析:对与ESG相关的新闻报道进行情绪倾向分析。
- 政策风险评估:监测政策变动对企业ESG评级的影响。
- 投资者关系管理:分析投资者关注点,指导公司披露策略。
项目特点
- 专业性:针对可持续投资领域定制,模型理解力强,效果优于通用模型。
- 易用性:支持PyTorch和TensorFlow两大框架,便于整合到现有系统中。
- 灵活性:可直接用于预训练模型的微调,适应多样化的应用场景。
- 高效部署:提供基于TorchServe的模型服务示例,简化生产环境中的模型部署流程。
通过将ESG-BERT集成到您的数据分析工作中,您将能够更深入地洞察企业和市场的ESG表现,从而做出更明智的投资决策。借助这个强大的工具,开启您的可持续投资智能之旅吧!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考