探索可持续投资的文本挖掘利器:ESG-BERT

探索可持续投资的文本挖掘利器:ESG-BERT

项目地址:https://gitcode.com/gh_mirrors/es/ESG-BERT

项目介绍

在金融领域的可持续投资(Environmental, Social, and Governance,简称ESG)中,文本挖掘成为评估企业社会责任与投资价值的重要工具。ESG-BERT 是一个专为这一领域设计的预训练模型,它结合了BERT的强大能力,并针对可持续投资语料进行进一步的预训练,从而提供更精确的文本分析结果。

该项目由 Charan PothireddiParabole.ai 联合开发,旨在帮助数据科学家和研究员轻松地在ESG相关任务上实现深度学习模型的快速应用和定制。

项目技术分析

ESG-BERT 基于BERT基础模型并进行了专项优化。通过在大量与可持续投资相关的文本数据集上进行预训练,该模型可以更好地理解和处理与ESG相关的关键信息。模型以PyTorch实现,但可以转换成TensorFlow版本,适用于不同框架的开发需求。

用户可以通过Hugging Face Hub获取预训练模型,并使用以下代码加载到PyTorch环境中进行微调:

model = BertForSequenceClassification.from_pretrained(
    'path/to/dir/containing/ESG-BERT', 
    num_labels = num, # 分类数目
    output_attentions = False, 
    output_hidden_states = False
)
model.to(device)

项目及技术应用场景

ESG-BERT 可广泛应用于以下场景:

  1. ESG评分预测:自动评估企业的环境、社会和治理表现。
  2. 新闻情感分析:对与ESG相关的新闻报道进行情绪倾向分析。
  3. 政策风险评估:监测政策变动对企业ESG评级的影响。
  4. 投资者关系管理:分析投资者关注点,指导公司披露策略。

项目特点

  1. 专业性:针对可持续投资领域定制,模型理解力强,效果优于通用模型。
  2. 易用性:支持PyTorch和TensorFlow两大框架,便于整合到现有系统中。
  3. 灵活性:可直接用于预训练模型的微调,适应多样化的应用场景。
  4. 高效部署:提供基于TorchServe的模型服务示例,简化生产环境中的模型部署流程。

通过将ESG-BERT集成到您的数据分析工作中,您将能够更深入地洞察企业和市场的ESG表现,从而做出更明智的投资决策。借助这个强大的工具,开启您的可持续投资智能之旅吧!

ESG-BERT Domain Specific BERT Model for Text Mining in Sustainable Investing 项目地址: https://gitcode.com/gh_mirrors/es/ESG-BERT

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏庭彭Maxine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值