YOLOv5 自瞄项目教程
aimcf_yolov5 使用yolov5算法实现cf的自瞄 项目地址: https://gitcode.com/gh_mirrors/ai/aimcf_yolov5
1. 项目目录结构及介绍
aimcf_yolov5/
├── data/
│ ├── images/
│ ├── labels/
│ └── ...
├── models/
│ ├── yolov5s.yaml
│ ├── yolov5m.yaml
│ └── ...
├── utils/
│ ├── datasets.py
│ ├── general.py
│ └── ...
├── weights/
│ ├── yolov5s.pt
│ ├── yolov5m.pt
│ └── ...
├── detect.py
├── train.py
├── requirements.txt
├── README.md
└── ...
目录结构说明:
- data/: 存放训练和测试数据集,包括图像和标签文件。
- models/: 存放YOLOv5模型的配置文件,如
yolov5s.yaml
、yolov5m.yaml
等。 - utils/: 存放各种实用工具脚本,如数据处理、模型评估等。
- weights/: 存放预训练模型权重文件,如
yolov5s.pt
、yolov5m.pt
等。 - detect.py: 用于目标检测的启动文件。
- train.py: 用于模型训练的启动文件。
- requirements.txt: 项目依赖的Python包列表。
- README.md: 项目说明文档。
2. 项目的启动文件介绍
detect.py
detect.py
是用于目标检测的启动文件。它可以从命令行接收参数,加载模型并进行目标检测。
使用示例:
python detect.py --weights weights/yolov5s.pt --source data/images/
主要参数:
--weights
: 指定使用的模型权重文件路径。--source
: 指定输入数据源,可以是图像文件夹、视频文件或摄像头。
train.py
train.py
是用于模型训练的启动文件。它可以从命令行接收参数,加载数据集并进行模型训练。
使用示例:
python train.py --data data/coco128.yaml --cfg models/yolov5s.yaml --weights weights/yolov5s.pt --epochs 300
主要参数:
--data
: 指定数据集配置文件路径。--cfg
: 指定模型配置文件路径。--weights
: 指定预训练模型权重文件路径。--epochs
: 指定训练的轮数。
3. 项目的配置文件介绍
models/yolov5s.yaml
yolov5s.yaml
是YOLOv5模型的配置文件,定义了模型的结构和超参数。
主要配置项:
nc
: 类别数量。depth_multiple
: 模型深度的倍数。width_multiple
: 模型宽度的倍数。anchors
: 锚点框的配置。backbone
: 模型的主干网络配置。head
: 模型的检测头配置。
data/coco128.yaml
coco128.yaml
是数据集的配置文件,定义了数据集的路径和类别信息。
主要配置项:
train
: 训练集路径。val
: 验证集路径。nc
: 类别数量。names
: 类别名称列表。
通过以上配置文件,用户可以自定义模型结构和数据集路径,以适应不同的任务需求。
aimcf_yolov5 使用yolov5算法实现cf的自瞄 项目地址: https://gitcode.com/gh_mirrors/ai/aimcf_yolov5