YOLOv5 自瞄项目教程

YOLOv5 自瞄项目教程

aimcf_yolov5 使用yolov5算法实现cf的自瞄 aimcf_yolov5 项目地址: https://gitcode.com/gh_mirrors/ai/aimcf_yolov5

1. 项目目录结构及介绍

aimcf_yolov5/
├── data/
│   ├── images/
│   ├── labels/
│   └── ...
├── models/
│   ├── yolov5s.yaml
│   ├── yolov5m.yaml
│   └── ...
├── utils/
│   ├── datasets.py
│   ├── general.py
│   └── ...
├── weights/
│   ├── yolov5s.pt
│   ├── yolov5m.pt
│   └── ...
├── detect.py
├── train.py
├── requirements.txt
├── README.md
└── ...

目录结构说明:

  • data/: 存放训练和测试数据集,包括图像和标签文件。
  • models/: 存放YOLOv5模型的配置文件,如yolov5s.yamlyolov5m.yaml等。
  • utils/: 存放各种实用工具脚本,如数据处理、模型评估等。
  • weights/: 存放预训练模型权重文件,如yolov5s.ptyolov5m.pt等。
  • detect.py: 用于目标检测的启动文件。
  • train.py: 用于模型训练的启动文件。
  • requirements.txt: 项目依赖的Python包列表。
  • README.md: 项目说明文档。

2. 项目的启动文件介绍

detect.py

detect.py 是用于目标检测的启动文件。它可以从命令行接收参数,加载模型并进行目标检测。

使用示例:
python detect.py --weights weights/yolov5s.pt --source data/images/
主要参数:
  • --weights: 指定使用的模型权重文件路径。
  • --source: 指定输入数据源,可以是图像文件夹、视频文件或摄像头。

train.py

train.py 是用于模型训练的启动文件。它可以从命令行接收参数,加载数据集并进行模型训练。

使用示例:
python train.py --data data/coco128.yaml --cfg models/yolov5s.yaml --weights weights/yolov5s.pt --epochs 300
主要参数:
  • --data: 指定数据集配置文件路径。
  • --cfg: 指定模型配置文件路径。
  • --weights: 指定预训练模型权重文件路径。
  • --epochs: 指定训练的轮数。

3. 项目的配置文件介绍

models/yolov5s.yaml

yolov5s.yaml 是YOLOv5模型的配置文件,定义了模型的结构和超参数。

主要配置项:
  • nc: 类别数量。
  • depth_multiple: 模型深度的倍数。
  • width_multiple: 模型宽度的倍数。
  • anchors: 锚点框的配置。
  • backbone: 模型的主干网络配置。
  • head: 模型的检测头配置。

data/coco128.yaml

coco128.yaml 是数据集的配置文件,定义了数据集的路径和类别信息。

主要配置项:
  • train: 训练集路径。
  • val: 验证集路径。
  • nc: 类别数量。
  • names: 类别名称列表。

通过以上配置文件,用户可以自定义模型结构和数据集路径,以适应不同的任务需求。

aimcf_yolov5 使用yolov5算法实现cf的自瞄 aimcf_yolov5 项目地址: https://gitcode.com/gh_mirrors/ai/aimcf_yolov5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏庭彭Maxine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值