DRCT 项目使用教程
1. 项目目录结构及介绍
DRCT 项目的目录结构如下:
DRCT/
├── datasets/
│ └── ...
├── drct/
│ └── ...
├── experiments/
│ └── pretrained_models/
│ └── ...
├── figures/
│ └── ...
├── options/
│ └── ...
├── results/
│ └── ...
├── LICENSE
├── README.md
├── REAL_DRCT_GAN_ONNX_inference_fp16.py
├── VERSION
├── inference.py
├── inference_fp16.py
├── parameter_size.ipynb
├── predict.py
├── requirements.txt
└── setup.cfg
目录介绍
- datasets/: 存放数据集的目录。
- drct/: 项目的主要代码目录,包含模型定义、训练和测试脚本等。
- experiments/pretrained_models/: 存放预训练模型的目录。
- figures/: 存放项目相关的图表和图像。
- options/: 存放配置文件的目录,包括训练和测试的配置文件。
- results/: 存放测试结果的目录。
- LICENSE: 项目的许可证文件。
- README.md: 项目的介绍文档。
- REAL_DRCT_GAN_ONNX_inference_fp16.py: 用于 ONNX 模型推理的脚本。
- VERSION: 项目的版本文件。
- inference.py: 用于推理的脚本。
- inference_fp16.py: 用于半精度推理的脚本。
- parameter_size.ipynb: 用于计算模型参数大小的 Jupyter Notebook。
- predict.py: 用于预测的脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- setup.cfg: 项目的配置文件。
2. 项目启动文件介绍
inference.py
inference.py
是用于在自定义数据集上进行推理的启动文件。使用方法如下:
python inference.py --input_dir [输入目录] --output_dir [输出目录] --model_path [模型路径]
inference_fp16.py
inference_fp16.py
是用于半精度推理的启动文件。使用方法如下:
python inference_fp16.py --input_dir [输入目录] --output_dir [输出目录] --model_path [模型路径]
predict.py
predict.py
是用于预测的启动文件。使用方法如下:
python predict.py --input_dir [输入目录] --output_dir [输出目录] --model_path [模型路径]
3. 项目的配置文件介绍
setup.cfg
setup.cfg
是项目的配置文件,包含了项目的各种设置和参数。该文件通常用于项目的打包和分发。
options/
目录
options/
目录下包含了训练和测试的配置文件。例如:
options/test/DRCT_SRx4_ImageNet-pretrain.yml
: 用于测试 DRCT 模型的配置文件。options/train/train_DRCT_SRx2_from_scratch.yml
: 用于从头开始训练 DRCT 模型的配置文件。
这些配置文件定义了模型的超参数、数据路径、训练和测试的设置等。
使用示例
测试模型
python drct/test.py -opt options/test/DRCT_SRx4_ImageNet-pretrain.yml
训练模型
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 drct/train.py -opt options/train/train_DRCT_SRx2_from_scratch.yml --launcher pytorch
以上命令将启动分布式训练,使用 8 个 GPU 进行训练。
通过以上教程,您可以了解 DRCT 项目的目录结构、启动文件和配置文件的使用方法。希望这些信息对您有所帮助!