DRCT 项目使用教程

DRCT 项目使用教程

DRCT Accepted by New Trends in Image Restoration and Enhancement workshop (NTIRE), in conjunction with CVPR 2024. DRCT 项目地址: https://gitcode.com/gh_mirrors/dr/DRCT

1. 项目目录结构及介绍

DRCT 项目的目录结构如下:

DRCT/
├── datasets/
│   └── ...
├── drct/
│   └── ...
├── experiments/
│   └── pretrained_models/
│       └── ...
├── figures/
│   └── ...
├── options/
│   └── ...
├── results/
│   └── ...
├── LICENSE
├── README.md
├── REAL_DRCT_GAN_ONNX_inference_fp16.py
├── VERSION
├── inference.py
├── inference_fp16.py
├── parameter_size.ipynb
├── predict.py
├── requirements.txt
└── setup.cfg

目录介绍

  • datasets/: 存放数据集的目录。
  • drct/: 项目的主要代码目录,包含模型定义、训练和测试脚本等。
  • experiments/pretrained_models/: 存放预训练模型的目录。
  • figures/: 存放项目相关的图表和图像。
  • options/: 存放配置文件的目录,包括训练和测试的配置文件。
  • results/: 存放测试结果的目录。
  • LICENSE: 项目的许可证文件。
  • README.md: 项目的介绍文档。
  • REAL_DRCT_GAN_ONNX_inference_fp16.py: 用于 ONNX 模型推理的脚本。
  • VERSION: 项目的版本文件。
  • inference.py: 用于推理的脚本。
  • inference_fp16.py: 用于半精度推理的脚本。
  • parameter_size.ipynb: 用于计算模型参数大小的 Jupyter Notebook。
  • predict.py: 用于预测的脚本。
  • requirements.txt: 项目依赖的 Python 包列表。
  • setup.cfg: 项目的配置文件。

2. 项目启动文件介绍

inference.py

inference.py 是用于在自定义数据集上进行推理的启动文件。使用方法如下:

python inference.py --input_dir [输入目录] --output_dir [输出目录] --model_path [模型路径]

inference_fp16.py

inference_fp16.py 是用于半精度推理的启动文件。使用方法如下:

python inference_fp16.py --input_dir [输入目录] --output_dir [输出目录] --model_path [模型路径]

predict.py

predict.py 是用于预测的启动文件。使用方法如下:

python predict.py --input_dir [输入目录] --output_dir [输出目录] --model_path [模型路径]

3. 项目的配置文件介绍

setup.cfg

setup.cfg 是项目的配置文件,包含了项目的各种设置和参数。该文件通常用于项目的打包和分发。

options/ 目录

options/ 目录下包含了训练和测试的配置文件。例如:

  • options/test/DRCT_SRx4_ImageNet-pretrain.yml: 用于测试 DRCT 模型的配置文件。
  • options/train/train_DRCT_SRx2_from_scratch.yml: 用于从头开始训练 DRCT 模型的配置文件。

这些配置文件定义了模型的超参数、数据路径、训练和测试的设置等。

使用示例

测试模型
python drct/test.py -opt options/test/DRCT_SRx4_ImageNet-pretrain.yml
训练模型
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 drct/train.py -opt options/train/train_DRCT_SRx2_from_scratch.yml --launcher pytorch

以上命令将启动分布式训练,使用 8 个 GPU 进行训练。


通过以上教程,您可以了解 DRCT 项目的目录结构、启动文件和配置文件的使用方法。希望这些信息对您有所帮助!

DRCT Accepted by New Trends in Image Restoration and Enhancement workshop (NTIRE), in conjunction with CVPR 2024. DRCT 项目地址: https://gitcode.com/gh_mirrors/dr/DRCT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏庭彭Maxine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值