HGS-CVRP:现代化的容量约束车辆路径问题求解工具
项目介绍
HGS-CVRP 是一个现代化的混合遗传搜索(Hybrid Genetic Search, HGS)实现,专门针对容量约束车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)进行优化。该项目不仅是对原始算法的简单重实现,还包含了过去十年研究中积累的速度优化策略和方法改进,特别是引入了名为 SWAP* 的新邻域,该邻域允许在不同路径之间交换两个客户而不进行插入操作。
项目技术分析
HGS-CVRP 的核心算法基于混合遗传搜索,结合了遗传算法和局部搜索的优势。项目的主要技术亮点包括:
- SWAP 邻域*:通过交换不同路径上的客户,提高了搜索效率和解的质量。
- 多样性控制:通过先进的多样性控制策略,确保种群的多样性,避免过早收敛。
- 速度优化:采用了多种速度优化策略,使得算法在处理中等规模实例时表现出色。
项目及技术应用场景
HGS-CVRP 适用于解决中等规模的容量约束车辆路径问题,特别适合以下场景:
- 物流配送:优化配送路线,减少运输成本。
- 供应链管理:优化车辆调度,提高资源利用率。
- 城市交通规划:优化公交线路,提升服务质量。
项目特点
- 透明性:代码结构清晰,易于理解和修改。
- 专业化:专门针对 CVRP 进行优化,性能卓越。
- 简洁性:保留了算法的核心元素,去除了不必要的复杂性。
- 多语言支持:提供了 C、Python 和 Julia 的接口,方便不同语言环境下的使用。
总结
HGS-CVRP 是一个高效、简洁且易于使用的开源工具,适用于解决中等规模的容量约束车辆路径问题。无论你是研究人员还是工程师,HGS-CVRP 都能为你提供强大的支持,帮助你优化车辆路径,降低成本,提升效率。快来试试吧!
参考文献
- Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., Rei, W. (2012). A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Operations Research, 60(3), 611-624.
- Vidal, T. (2022). Hybrid genetic search for the CVRP: Open-source implementation and SWAP* neighborhood. Computers & Operations Research, 140, 105643.
项目地址:HGS-CVRP GitHub