AI-AC:打破垄断,开源的深度学习云反作弊系统
项目介绍
在当前的游戏市场中,反作弊系统往往被闭源付费产品所垄断,这不仅限制了技术的普及,也阻碍了创新的发展。为了打破这一局面,AI-AC 项目应运而生。AI-AC 是一个半开源的时频变换与深度学习云反作弊系统,旨在通过开源的方式,让更多人参与到反作弊技术的研发中来,共同推动这一领域的发展。
AI-AC 的核心功能是判断玩家是否使用了第三方瞄准工具,虽然目前项目仍处于 POC(概念验证)阶段,但其技术架构和实现思路已经展示出了巨大的潜力。
项目技术分析
1. 采样技术
AI-AC 的采样过程分为两步:
-
计算 SHB(SignedHitBox):SHB 是攻击一个实体所需的最小正方形 HitBox,其符号取决于箭头相对于连线的方向(顺时针或逆时针)。这一步骤通过图像处理技术实现,确保了数据的准确性和可靠性。
-
FFT(快速傅里叶变换):FFT 用于将时域信号转换为频域信号,从而提取出有用的特征。这一步骤为后续的深度学习模型提供了高质量的输入数据。
2. 通讯架构
AI-AC 采用了经典的 C/S(客户端/服务器)架构,客户端负责采样并将数据发送至服务端,服务端则进行数据处理和分类。这种架构不仅解决了 Java 性能瓶颈问题,还通过多线程处理确保了服务端的效率。
3. 深度学习模型
AI-AC 的核心在于其深度学习模型。项目采用了一个 5 层的神经网络,节点数为 22, 30, 30, 30, 3。通过大量的训练,模型在判断玩家是否使用第三方瞄准工具方面表现出色,后验准确率达到了 99%。
项目及技术应用场景
AI-AC 的应用场景主要集中在游戏反作弊领域。无论是大型多人在线游戏(MMO)还是竞技类游戏,AI-AC 都能有效识别并阻止玩家使用第三方作弊工具,从而维护游戏的公平性和玩家的游戏体验。
此外,AI-AC 的开源特性也使其可以被广泛应用于其他需要实时数据处理和分析的场景,如金融风控、网络安全等领域。
项目特点
1. 开源与透明
AI-AC 项目采用了半开源的方式,客户端和服务端的通讯部分完全开源,这不仅增加了项目的透明度,也鼓励了社区的参与和贡献。
2. 高性能与可扩展性
通过 C/S 架构和多线程处理,AI-AC 在保证高性能的同时,也具备了良好的可扩展性。服务端每秒可以处理 150 次请求,足以应对大规模在线游戏的需求。
3. 深度学习驱动的精准判断
AI-AC 的核心在于其深度学习模型,通过大量的数据训练,模型能够精准判断玩家是否使用了第三方瞄准工具,准确率高达 99%。
4. 社区驱动与数据共享
AI-AC 鼓励用户捐献数据,通过社区的力量不断优化模型。这种数据共享的方式不仅加速了模型的迭代,也增强了社区的凝聚力。
结语
AI-AC 项目不仅是一个技术上的突破,更是一次开源精神的实践。通过开源的方式,AI-AC 打破了传统反作弊市场的垄断,为游戏行业带来了新的可能性。如果你对反作弊技术感兴趣,或者希望为游戏行业的公平性贡献一份力量,AI-AC 绝对是一个值得关注的项目。
加入我们,一起推动反作弊技术的进步!
项目地址: AI-AClient
下载地址: AI-AC 下载包
捐献数据: 邮件到 huzpsb@qq.com
标题注明 [AI-AC捐献]
或者加群
捐献资金: 爱发电
感谢: 华中科技大学博士生周恩泽、光学与电子信息学院的郑老师、The Eclipse Deeplearning4J ecosystem 以及所有关注和支持 AI-AC 项目的你!