Marvin Python Toolbox 使用教程
1. 项目介绍
Marvin Python Toolbox 是一个开源的人工智能平台,专注于帮助数据科学家解决复杂问题。该项目已被 Apache 基金会接受,并迁移到 Apache 孵化器项目中。Marvin 提供了一个标准化的大规模、语言无关的架构,简化了数据探索和建模的过程。
2. 项目快速启动
2.1 安装 Marvin (Ubuntu)
首先,确保你已经安装了 Python 和 pip。然后,使用以下命令安装 Marvin:
pip install marvin-python-toolbox
2.2 创建一个新的引擎
使用以下命令创建一个新的引擎:
marvin engine-generate
按照提示输入相关信息,等待引擎环境准备完成。
2.3 测试新引擎
进入新引擎的环境并运行测试:
workon <new_engine_name>-env
marvin test
2.4 启动 Jupyter Notebook
启动 Jupyter Notebook 并访问它:
marvin notebook
3. 应用案例和最佳实践
3.1 案例:Iris 物种分类
Marvin 提供了一个示例引擎,用于 Iris 物种分类。你可以通过以下步骤运行该示例:
-
克隆示例引擎:
git clone https://github.com/marvin-ai/engines.git
-
生成新的 Marvin 引擎环境:
workon python-toolbox-env marvin engine-generateenv /engines/iris-species-engine/
-
运行 Iris 物种引擎:
workon iris-species-engine-env marvin engine-dryrun
3.2 最佳实践
- 标准化架构:Marvin 的标准化架构使得团队可以更容易地协作和维护项目。
- 自动化测试:使用
marvin test
命令进行自动化测试,确保代码质量。 - 持续集成:结合 Travis CI 等工具,实现持续集成和部署。
4. 典型生态项目
4.1 Apache Marvin AI
Marvin AI 是 Marvin Python Toolbox 的官方项目,已被 Apache 基金会接受并迁移到 Apache 孵化器项目中。你可以通过以下链接访问该项目:
4.2 Marvin 示例引擎
Marvin 提供了多个示例引擎,帮助用户快速上手和理解 Marvin 的使用。你可以通过以下链接访问示例引擎:
4.3 Marvin 社区
Marvin 拥有一个活跃的社区,用户可以在社区中交流经验、提出问题和贡献代码。你可以通过以下链接访问 Marvin 社区: