SGMN 项目教程

SGMN 项目教程

sgmn Graph-Structured Referring Expressions Reasoning in The Wild, In CVPR 2020, Oral. 项目地址: https://gitcode.com/gh_mirrors/sg/sgmn

1. 项目目录结构及介绍

sgmn/
├── experiments/
│   └── scripts/
├── fig/
├── lib/
├── tools/
├── utils/
├── LICENSE
└── README.md
  • experiments/: 包含实验脚本,通常用于训练和评估模型。
  • fig/: 可能包含项目中使用的图表或图像文件。
  • lib/: 包含项目的核心库文件,可能是实现模型或算法的主要代码。
  • tools/: 包含项目中使用的工具脚本,可能用于数据处理或其他辅助功能。
  • utils/: 包含项目的实用工具函数,可能用于日志记录、数据加载等。
  • LICENSE: 项目的许可证文件,通常为 MIT 许可证。
  • README.md: 项目的介绍文件,包含项目的基本信息和使用说明。

2. 项目的启动文件介绍

项目中没有明确的启动文件(如 main.pyapp.py),但可以通过运行 experiments/scripts/ 目录下的脚本来启动训练或评估任务。例如:

bash experiments/scripts/train.sh $GPUs

该脚本会启动模型的训练过程,$GPUs 参数用于指定使用的 GPU 数量。

3. 项目的配置文件介绍

项目中没有明确的配置文件(如 config.yamlsettings.py),但可以通过修改 experiments/scripts/ 目录下的脚本文件来调整训练和评估的参数。例如,train.shevaluate.sh 脚本中可能包含一些默认参数,用户可以根据需要进行修改。

例如,在 train.sh 中可能会有如下参数:

# 设置训练参数
BATCH_SIZE=32
LEARNING_RATE=0.001
EPOCHS=100

用户可以通过修改这些参数来调整训练过程。


以上是 SGMN 项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。

sgmn Graph-Structured Referring Expressions Reasoning in The Wild, In CVPR 2020, Oral. 项目地址: https://gitcode.com/gh_mirrors/sg/sgmn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍辰惟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值