基于ModelScope/AgentScope的多智能体框架在SWE-Bench中的实践探索
agentscope 项目地址: https://gitcode.com/gh_mirrors/ag/agentscope
引言
在软件工程领域,如何利用人工智能技术提升代码修复效率一直是研究热点。本文将详细介绍我们基于ModelScope/AgentScope多智能体框架在SWE-Bench基准测试中的实践成果,该框架成功解决了63.4%的代码问题。我们将从技术实现、方法论到实践经验进行全面剖析。
技术架构概述
我们的解决方案采用了两阶段多智能体架构:
- 问题解决阶段:通过三个专业智能体的协同工作
- 投票决策阶段:利用训练好的奖励模型进行最优方案选择
这种架构设计充分结合了大型语言模型(LLM)的推理能力和专业工具的操作能力,实现了从问题复现到最终修复的全流程自动化。
问题解决阶段详解
1. 问题复现智能体
核心职责:
- 根据PR描述准确理解问题
- 创建
reproduction_test.py
测试文件 - 确保问题能够被稳定复现
技术特点:
- 采用思维链(Chain-of-Thought)分析模式
- 具备测试文件编写能力
- 支持问题复现验证
2. 问题修复智能体
核心职责:
- 分析问题根源
- 生成修复补丁
- 验证修复效果
关键技术:
- 代码差异分析工具
- Git版本控制集成
- 修复效果即时验证机制
3. 测试验证智能体
核心职责:
- 执行相关单元测试
- 确保修复不引入回归问题
- 必要时迭代优化修复方案
技术实现:
- 自动化测试执行框架
- 测试失败自动重试机制
- 修复方案迭代优化流程
投票决策阶段设计
奖励模型训练
我们基于Qwen2.5-Coder-Instruct模型进行微调,训练数据来自多个专业软件工程数据集。该模型能够:
- 分析补丁质量
- 评估修复方案的完整性
- 预测方案的实际效果
投票机制
从四种候选方案中:
- 统一轨迹格式处理
- 奖励模型评分
- 选择最高分方案
相比直接使用LLM作为评判者,训练后的奖励模型表现出更稳定的性能。
实践经验与洞见
1. LLM能力边界
虽然大型语言模型展现出强大的问题定位和修复能力,但在以下方面仍存在局限:
- 代码库特定约定的理解
- 代码对称性保持
- 复杂断言条件的满足
2. 高方差挑战
我们的实践表明:
- 并行运行结果波动较大
- 小改动可能导致结果显著差异
- 投票机制能有效平滑方差影响
3. 工程优化方向
基于项目经验,我们建议:
- 加强代码库特定知识注入
- 优化智能体的错误恢复机制
- 完善轨迹记录和分析工具
结论与展望
ModelScope/AgentScope多智能体框架在SWE-Bench中的表现验证了其在软件工程自动化领域的潜力。未来我们将继续探索:
- 更精细化的智能体分工
- 更强大的奖励模型训练
- 更稳定的执行流程控制
这项研究为AI辅助软件工程提供了有价值的实践参考,我们期待与业界同行共同推动这一领域的发展。
agentscope 项目地址: https://gitcode.com/gh_mirrors/ag/agentscope
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考