基于ModelScope/AgentScope的多智能体框架在SWE-Bench中的实践探索

基于ModelScope/AgentScope的多智能体框架在SWE-Bench中的实践探索

agentscope agentscope 项目地址: https://gitcode.com/gh_mirrors/ag/agentscope

引言

在软件工程领域,如何利用人工智能技术提升代码修复效率一直是研究热点。本文将详细介绍我们基于ModelScope/AgentScope多智能体框架在SWE-Bench基准测试中的实践成果,该框架成功解决了63.4%的代码问题。我们将从技术实现、方法论到实践经验进行全面剖析。

技术架构概述

我们的解决方案采用了两阶段多智能体架构:

  1. 问题解决阶段:通过三个专业智能体的协同工作
  2. 投票决策阶段:利用训练好的奖励模型进行最优方案选择

这种架构设计充分结合了大型语言模型(LLM)的推理能力和专业工具的操作能力,实现了从问题复现到最终修复的全流程自动化。

问题解决阶段详解

1. 问题复现智能体

核心职责

  • 根据PR描述准确理解问题
  • 创建reproduction_test.py测试文件
  • 确保问题能够被稳定复现

技术特点

  • 采用思维链(Chain-of-Thought)分析模式
  • 具备测试文件编写能力
  • 支持问题复现验证

2. 问题修复智能体

核心职责

  • 分析问题根源
  • 生成修复补丁
  • 验证修复效果

关键技术

  • 代码差异分析工具
  • Git版本控制集成
  • 修复效果即时验证机制

3. 测试验证智能体

核心职责

  • 执行相关单元测试
  • 确保修复不引入回归问题
  • 必要时迭代优化修复方案

技术实现

  • 自动化测试执行框架
  • 测试失败自动重试机制
  • 修复方案迭代优化流程

投票决策阶段设计

奖励模型训练

我们基于Qwen2.5-Coder-Instruct模型进行微调,训练数据来自多个专业软件工程数据集。该模型能够:

  1. 分析补丁质量
  2. 评估修复方案的完整性
  3. 预测方案的实际效果

投票机制

从四种候选方案中:

  1. 统一轨迹格式处理
  2. 奖励模型评分
  3. 选择最高分方案

相比直接使用LLM作为评判者,训练后的奖励模型表现出更稳定的性能。

实践经验与洞见

1. LLM能力边界

虽然大型语言模型展现出强大的问题定位和修复能力,但在以下方面仍存在局限:

  • 代码库特定约定的理解
  • 代码对称性保持
  • 复杂断言条件的满足

2. 高方差挑战

我们的实践表明:

  • 并行运行结果波动较大
  • 小改动可能导致结果显著差异
  • 投票机制能有效平滑方差影响

3. 工程优化方向

基于项目经验,我们建议:

  • 加强代码库特定知识注入
  • 优化智能体的错误恢复机制
  • 完善轨迹记录和分析工具

结论与展望

ModelScope/AgentScope多智能体框架在SWE-Bench中的表现验证了其在软件工程自动化领域的潜力。未来我们将继续探索:

  1. 更精细化的智能体分工
  2. 更强大的奖励模型训练
  3. 更稳定的执行流程控制

这项研究为AI辅助软件工程提供了有价值的实践参考,我们期待与业界同行共同推动这一领域的发展。

agentscope agentscope 项目地址: https://gitcode.com/gh_mirrors/ag/agentscope

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/8947b2b6b560 八数码问题,即滑动拼图游戏,是计算机科学中一个经典的图灵完全问题,涉及搜索算法、状态空间复杂度和最优路径查找等核心概念。本项目利用Visual Studio 2017集成开发环境和MFC(Microsoft Foundation Classes)库,实现了八数码问题的求解,并提供了A*算法、全局择优搜索和宽度优先搜索三种搜索算法。以下将对相关知识点进行详细说明。 MFC是微软为Windows应用程序开发提供的一套基于C++的类库,能够简化Windows编程工作,方便开发者构建用户界面、处理系统消息及进行数据存储等。在本项目中,MFC用于创建图形用户界面(GUI),展示拼图状态并接收用户输入,为八数码问题的实现提供了友好的交互平台。 A*算法是一种启发式搜索算法,结合了最佳优先搜索(如Dijkstra算法)和贪婪最佳优先搜索,通过引入启发式函数来估计从当前节点到目标节点的最短路径,从而有效减少搜索空间,提高搜索效率。在八数码问题中,常用的启发式函数是曼哈顿距离或汉明距离,它们能够较好地评估每个状态与目标状态的距离。 全局择优搜索,也称为全局最佳优先搜索,是一种优化策略。在搜索过程中,它始终选择当前最有希望的状态进行扩展。在八数码问题中,这意味着每次选取具有最低评估值(通常是启发式函数值加上已走步数)的状态进行下一步操作。 宽度优先搜索(BFS)是一种非启发式搜索策略,按照节点的层次进行扩展,优先考虑离起始状态近的节点。虽然BFS不直接考虑目标距离,但其能够保证找到的路径是最短的,对于八数码问题的解决也有重要意义,尤其是在所有状态距离目标状态的启发式值相同时。 在实现过程中,加入了计时功能,用于对比不同算法的运行效率,帮助理解在实际应用中如何根据问题特性和资源限制选择合适的算法。同时,显示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

许煦津

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值