推荐:HuggingFace模型下载神器

推荐:HuggingFace模型下载神器

HuggingFaceModelDownloaderSimple go utility to download HuggingFace Models and Datasets项目地址:https://gitcode.com/gh_mirrors/hu/HuggingFaceModelDownloader

简而言之

想要快速、高效地从HuggingFace Hub下载模型和数据集吗?HuggingFace Model Downloader是一款专为此设计的工具,它支持多线程下载LFS文件,并通过SHA256校验确保模型完整无损。只需一行命令,无论是Linux、Mac还是Windows(WSL2),您就能轻松安装并使用。

项目简介

HuggingFace Model Downloader是一个轻便的实用程序,能够帮助开发者便捷地从HuggingFace官网下载所需模型和数据集。其亮点在于其多线程下载功能,特别是针对大型文件,以及对LFS文件的智能处理。此外,该工具还具备文件完整性检查功能,通过比对SHA256哈希值,确保下载的模型文件与原始文件一致。

技术解析

该工具的核心特性是其多线程下载机制,大大提升了下载速度,尤其对于LFS(Large File Storage)文件。不仅如此,用户还可以通过指定过滤条件,仅下载特定的LFS模型文件,节省存储空间。更巧妙的是,它会在下载完成后进行SHA256校验,保证了模型的完整性和可靠性。即使下载过程被中断,工具也能继续从断点处开始下载,真正实现了无缝续传。

应用场景

  1. 快速部署模型 - 开发者可以利用这款工具在本地环境中快速搭建预训练模型,从而进行进一步的开发或实验。
  2. 大规模数据集获取 - 对于需要大量数据进行训练或验证的情况,该工具能有效加速数据集的下载流程。
  3. 持续集成环境 - 在CI/CD系统中,可以使用该工具自动化下载模型,以供构建和测试环节使用。
  4. 跨平台支持 - 无论您是在Linux、macOS还是Windows环境下工作,都能轻松安装并使用。

项目特点

  1. 一键安装 - 提供简单的命令行接口,可自动检测操作系统并安装。
  2. 多线程下载 - 支持自定义并发连接数,提高下载效率。
  3. 过滤器功能 - 用户可以选择只下载特定版本的模型,如GGML变体。
  4. 完整性检查 - 通过SHA256校验,确保模型文件不被篡改。
  5. 断点续传 - 能够恢复中断的下载,避免重复下载已有的部分。
  6. 跨平台兼容 - 兼容Linux、macOS和Windows(WSL2)操作系统。

只需几行简单的命令,您就能拥有一个强大的模型下载工具。例如:

bash <(curl -sSL https://g.bodaay.io/hfd) -m TheBloke/orca_mini_7B-GPTQ

这将自动下载"TheBloke/orca_mini_7B-GPTQ"模型。是不是很简单?

现在就试试HuggingFace Model Downloader吧,让它成为您模型下载的新助手,让工作变得更加高效!

HuggingFaceModelDownloaderSimple go utility to download HuggingFace Models and Datasets项目地址:https://gitcode.com/gh_mirrors/hu/HuggingFaceModelDownloader

Huggingface模型区别主要是根据其储存位置的设置方法来区分。在引用中提到了修改huggingface模型储存位置的设置方法,这是一种全局变量设置的方式。也就是说,通过设置全局变量,可以将所有的huggingface模型的储存位置进行统一的修改。 另外,在引用中提到了一种局部变量设置的方法。这种方法可以针对某个具体的模型进行储存位置的设置。具体代码如下所示: ``` from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", cache_dir="/home/transformers/huggingface/model") model = AutoModel.from_pretrained("bert-base-uncased", cache_dir="/home/transformers/huggingface/model") ``` 通过在初始化模型和分词器的时候指定`cache_dir`参数,可以实现对某个模型的储存位置进行设置。 综上所述,Huggingface模型区别主要在于储存位置的设置方法,可以通过全局变量设置或局部变量设置来实现。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [修改huggingface模型的储存位置的设置方法](https://blog.csdn.net/weixin_43178406/article/details/128743349)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [NLP实战-Huggingface神器](https://download.csdn.net/download/u011063343/87671549)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乌昱有Melanie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值