探索AKG:自动内核生成器,打造深度学习性能巅峰

探索AKG:自动内核生成器,打造深度学习性能巅峰

akg AKG (Auto Kernel Generator) is an optimizer for operators in Deep Learning Networks, which provides the ability to automatically fuse ops with specific patterns. 项目地址: https://gitcode.com/gh_mirrors/ak/akg

AKG,全称为Auto Kernel Generator,是一款专为深度神经网络算子优化而设计的强大工具。它以自动化方式实现算子优化,通过独特的模式匹配融合功能,大大提升了在多种硬件后端上的网络执行效率。AKG与MindSpore的图算融合技术无缝集成,为您带来前所未有的高效计算体验。

项目介绍

AKG的核心在于其三个关键优化模块——规范化、自动调度和后端优化。规范化模块通过自动运算符inline、循环融合和公共子表达式消除,将复杂的计算公式转化为适合优化的形式。自动调度模块利用polyhedral技术进行向量化、切分、线程映射等操作,确保最佳执行效率。最后,后端优化模块针对特定硬件特性进行定制化调整,如启用TensorCore、优化内存管理和同步策略。

AKG Design Overview

AKG设计概览

技术分析

  • 硬件后端支持:AKG目前支持包括华为昇腾910芯片、NVIDIA V100/A100 GPU和CPU在内的多种平台,未来还将继续扩展支持范围。

  • 构建流程:项目提供了便捷的构建选项,无论是通过MindSpore框架还是独立编译,都能轻松完成。对于Ascend、GPU和CPU的配置,只需简单几步即可完成编译。

  • 运行测试:AKG提供详尽的测试用例和自动化测试脚本,便于开发者验证性能并调试代码。

应用场景

AKG广泛适用于各种深度学习场景,尤其是在对计算速度和资源效率有高要求的应用中:

  • 模型训练:在大数据集上训练复杂模型时,AKG可以通过自动优化提高训练速度,缩短迭代周期。

  • 高性能推理:在线服务或边缘设备的实时推理环境中,AKG的优化可以显著减少延迟,提升用户体验。

  • AI加速器开发:AKG可以帮助研究人员快速评估新硬件后端的潜力,优化算法以充分利用其计算能力。

项目特点

  1. 自动化优化:无需手动编写底层内核代码,AKG自动生成针对特定硬件的高性能计算逻辑。

  2. 灵活性:支持多种硬件平台,适应性强,易于移植到新的计算环境。

  3. 易用性:提供清晰的构建和运行指引,测试用例丰富,便于理解和使用。

  4. 社区驱动:开放源码,鼓励用户参与贡献,持续改进和扩展功能。

AKG是深度学习领域的前沿工具,它将帮助开发者释放硬件潜能,实现更高效、更灵活的模型训练和推理。立即加入AKG的行列,让您的AI应用达到性能的新高度!

akg AKG (Auto Kernel Generator) is an optimizer for operators in Deep Learning Networks, which provides the ability to automatically fuse ops with specific patterns. 项目地址: https://gitcode.com/gh_mirrors/ak/akg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍妲葵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值