TensorFlow to ONNX 转换器项目教程
1. 项目目录结构及介绍
tensorflow-onnx/
├── ci_build/
│ └── azure_pipelines/
├── examples/
├── tests/
├── tf2onnx/
├── tools/
├── tutorials/
├── .gitignore
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── Troubleshooting.md
├── VERSION_NUMBER
├── build.bat
├── build.sh
├── setup.cfg
├── setup.py
└── support_status.md
目录结构介绍
- ci_build/: 包含持续集成(CI)构建的配置文件,主要用于Azure Pipelines。
- examples/: 包含一些示例模型和转换脚本,帮助用户理解如何使用tf2onnx进行模型转换。
- tests/: 包含项目的单元测试和集成测试,确保转换器的正确性和稳定性。
- tf2onnx/: 核心代码目录,包含TensorFlow到ONNX转换的主要逻辑和实现。
- tools/: 包含一些实用工具和脚本,帮助用户进行模型转换和调试。
- tutorials/: 包含一些教程和指南,帮助用户快速上手和深入理解项目。
- .gitignore: Git忽略文件,指定哪些文件和目录不需要被版本控制。
- CONTRIBUTING.md: 贡献指南,指导开发者如何为项目贡献代码。
- LICENSE: 项目许可证,Apache-2.0。
- README.md: 项目主文档,包含项目的基本介绍、安装和使用说明。
- Troubleshooting.md: 故障排除指南,帮助用户解决常见问题。
- VERSION_NUMBER: 项目版本号文件。
- build.bat: Windows平台下的构建脚本。
- build.sh: Linux和MacOS平台下的构建脚本。
- setup.cfg: Python项目的配置文件。
- setup.py: Python项目的安装脚本。
- support_status.md: 支持状态文档,列出支持的TensorFlow和ONNX版本。
2. 项目启动文件介绍
setup.py
setup.py
是Python项目的标准安装脚本,用于安装项目的依赖项并配置项目。通过运行以下命令可以安装tf2onnx:
python setup.py install
build.sh
和 build.bat
这两个文件分别是Linux/MacOS和Windows平台下的构建脚本。它们用于构建项目并生成可执行文件或库。
-
Linux/MacOS:
./build.sh
-
Windows:
build.bat
3. 项目的配置文件介绍
setup.cfg
setup.cfg
是Python项目的配置文件,用于指定项目的各种配置选项,如构建选项、测试选项等。它通常与setup.py
配合使用,提供更详细的配置信息。
support_status.md
support_status.md
文件列出了项目支持的TensorFlow和ONNX版本,以及各个版本的兼容性状态。用户可以根据此文件选择合适的版本进行模型转换。
Troubleshooting.md
Troubleshooting.md
文件提供了常见问题的解决方案和故障排除指南,帮助用户在使用过程中遇到问题时快速找到解决方法。
通过以上介绍,您应该对TensorFlow to ONNX转换器项目的目录结构、启动文件和配置文件有了基本的了解。希望这些信息能帮助您更好地使用和开发该项目。