Apache ShardingSphere ElasticJob-Cloud 快速入门指南

Apache ShardingSphere ElasticJob-Cloud 快速入门指南

shardingsphere-elasticjob Distributed scheduled job shardingsphere-elasticjob 项目地址: https://gitcode.com/gh_mirrors/shard/shardingsphere-elasticjob

概述

Apache ShardingSphere ElasticJob-Cloud 是一个分布式任务调度解决方案,专为云环境设计,提供弹性调度、资源分配和作业管理能力。本文将详细介绍如何快速开始使用 ElasticJob-Cloud 进行分布式任务开发与部署。

环境准备

在开始之前,请确保您已经具备以下条件:

  1. 已部署 ElasticJob-Cloud 调度器环境
  2. 开发环境已安装 JDK 1.8+
  3. 构建工具 Maven 3.0+

项目依赖配置

首先需要在项目中添加 ElasticJob-Cloud 的依赖。在 Maven 项目的 pom.xml 文件中添加以下依赖:

<dependency>
    <groupId>org.apache.shardingsphere.elasticjob</groupId>
    <artifactId>elasticjob-cloud-executor</artifactId>
    <version>${latest.release.version}</version>
</dependency>

请将 ${latest.release.version} 替换为当前最新的版本号。

开发作业逻辑

ElasticJob-Cloud 支持多种作业类型,这里以最简单的 SimpleJob 为例:

public class MyJob implements SimpleJob {
    
    @Override
    public void execute(ShardingContext context) {
        // 获取当前分片信息
        int shardingItem = context.getShardingItem();
        int shardingTotalCount = context.getShardingTotalCount();
        
        // 根据分片项执行不同的业务逻辑
        switch (shardingItem) {
            case 0: 
                // 处理分片项0的任务
                processShard0();
                break;
            case 1: 
                // 处理分片项1的任务
                processShard1();
                break;
            case 2: 
                // 处理分片项2的任务
                processShard2();
                break;
            // 可以继续添加更多分片处理逻辑
        }
    }
    
    private void processShard0() {
        // 具体业务实现
    }
    
    private void processShard1() {
        // 具体业务实现
    }
    
    private void processShard2() {
        // 具体业务实现
    }
}

作业启动入口

每个作业需要一个启动类,包含 main 方法并调用 JobBootstrap.execute():

public class MyJobDemo {
    
    public static void main(final String[] args) {
        // 创建并执行作业实例
        JobBootstrap.execute(new MyJob());
    }
}

项目打包

开发完成后,需要将项目打包成可部署的格式。通常使用 tar.gz 格式:

# 将项目打包为 my-job.tar.gz
tar -cvf my-job.tar.gz my-job

打包内容应包含:

  • 编译后的 class 文件
  • 依赖的库文件
  • 必要的启动脚本

作业应用发布

将打包好的作业发布到 ElasticJob-Cloud 调度中心:

curl -l -H "Content-type: application/json" -X POST \
-d '{
    "appName":"my_app",
    "appURL":"http://app_host:8080/my-job.tar.gz",
    "cpuCount":0.1,
    "memoryMB":64.0,
    "bootstrapScript":"bin/start.sh",
    "appCacheEnable":true,
    "eventTraceSamplingCount":0
}' \
http://elasticjob_cloud_host:8899/api/app

参数说明:

  • appName: 应用唯一标识
  • appURL: 应用包下载地址
  • cpuCount: 每个实例需要的CPU核数
  • memoryMB: 每个实例需要的内存(MB)
  • bootstrapScript: 启动脚本路径(相对于应用包根目录)
  • appCacheEnable: 是否启用应用缓存
  • eventTraceSamplingCount: 事件追踪采样率

作业调度配置

发布应用后,需要配置作业调度策略:

curl -l -H "Content-type: application/json" -X POST \
-d '{
    "jobName":"my_job",
    "appName":"my_app",
    "jobExecutionType":"TRANSIENT",
    "cron":"0/5 * * * * ?",
    "shardingTotalCount":3,
    "cpuCount":0.1,
    "memoryMB":64.0
}' \
http://elasticjob_cloud_host:8899/api/job/register

关键参数解析:

  • jobName: 作业唯一标识
  • appName: 关联的应用名称
  • jobExecutionType: 作业执行类型(TRANSIENT为瞬时作业)
  • cron: 调度表达式
  • shardingTotalCount: 分片总数
  • cpuCount/memoryMB: 每个分片实例的资源需求

最佳实践建议

  1. 分片策略设计:

    • 根据业务数据量合理设置分片总数
    • 确保每个分片的处理负载均衡
    • 考虑数据本地化原则,减少网络传输
  2. 资源规划:

    • 准确评估作业的资源需求
    • 为系统预留足够的资源余量
    • 考虑作业并发执行时的资源争用情况
  3. 错误处理:

    • 实现完善的异常处理机制
    • 考虑作业失败后的重试策略
    • 记录详细的执行日志便于排查问题
  4. 监控告警:

    • 配置作业执行监控
    • 设置关键指标告警阈值
    • 定期检查作业执行历史

通过以上步骤,您已经完成了 ElasticJob-Cloud 的基本使用流程。根据实际业务需求,您可以进一步探索弹性伸缩、故障转移等高级特性。

shardingsphere-elasticjob Distributed scheduled job shardingsphere-elasticjob 项目地址: https://gitcode.com/gh_mirrors/shard/shardingsphere-elasticjob

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

殷巧或

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值