Apache ShardingSphere ElasticJob-Cloud 快速入门指南
概述
Apache ShardingSphere ElasticJob-Cloud 是一个分布式任务调度解决方案,专为云环境设计,提供弹性调度、资源分配和作业管理能力。本文将详细介绍如何快速开始使用 ElasticJob-Cloud 进行分布式任务开发与部署。
环境准备
在开始之前,请确保您已经具备以下条件:
- 已部署 ElasticJob-Cloud 调度器环境
- 开发环境已安装 JDK 1.8+
- 构建工具 Maven 3.0+
项目依赖配置
首先需要在项目中添加 ElasticJob-Cloud 的依赖。在 Maven 项目的 pom.xml 文件中添加以下依赖:
<dependency>
<groupId>org.apache.shardingsphere.elasticjob</groupId>
<artifactId>elasticjob-cloud-executor</artifactId>
<version>${latest.release.version}</version>
</dependency>
请将 ${latest.release.version}
替换为当前最新的版本号。
开发作业逻辑
ElasticJob-Cloud 支持多种作业类型,这里以最简单的 SimpleJob 为例:
public class MyJob implements SimpleJob {
@Override
public void execute(ShardingContext context) {
// 获取当前分片信息
int shardingItem = context.getShardingItem();
int shardingTotalCount = context.getShardingTotalCount();
// 根据分片项执行不同的业务逻辑
switch (shardingItem) {
case 0:
// 处理分片项0的任务
processShard0();
break;
case 1:
// 处理分片项1的任务
processShard1();
break;
case 2:
// 处理分片项2的任务
processShard2();
break;
// 可以继续添加更多分片处理逻辑
}
}
private void processShard0() {
// 具体业务实现
}
private void processShard1() {
// 具体业务实现
}
private void processShard2() {
// 具体业务实现
}
}
作业启动入口
每个作业需要一个启动类,包含 main 方法并调用 JobBootstrap.execute():
public class MyJobDemo {
public static void main(final String[] args) {
// 创建并执行作业实例
JobBootstrap.execute(new MyJob());
}
}
项目打包
开发完成后,需要将项目打包成可部署的格式。通常使用 tar.gz 格式:
# 将项目打包为 my-job.tar.gz
tar -cvf my-job.tar.gz my-job
打包内容应包含:
- 编译后的 class 文件
- 依赖的库文件
- 必要的启动脚本
作业应用发布
将打包好的作业发布到 ElasticJob-Cloud 调度中心:
curl -l -H "Content-type: application/json" -X POST \
-d '{
"appName":"my_app",
"appURL":"http://app_host:8080/my-job.tar.gz",
"cpuCount":0.1,
"memoryMB":64.0,
"bootstrapScript":"bin/start.sh",
"appCacheEnable":true,
"eventTraceSamplingCount":0
}' \
http://elasticjob_cloud_host:8899/api/app
参数说明:
appName
: 应用唯一标识appURL
: 应用包下载地址cpuCount
: 每个实例需要的CPU核数memoryMB
: 每个实例需要的内存(MB)bootstrapScript
: 启动脚本路径(相对于应用包根目录)appCacheEnable
: 是否启用应用缓存eventTraceSamplingCount
: 事件追踪采样率
作业调度配置
发布应用后,需要配置作业调度策略:
curl -l -H "Content-type: application/json" -X POST \
-d '{
"jobName":"my_job",
"appName":"my_app",
"jobExecutionType":"TRANSIENT",
"cron":"0/5 * * * * ?",
"shardingTotalCount":3,
"cpuCount":0.1,
"memoryMB":64.0
}' \
http://elasticjob_cloud_host:8899/api/job/register
关键参数解析:
jobName
: 作业唯一标识appName
: 关联的应用名称jobExecutionType
: 作业执行类型(TRANSIENT为瞬时作业)cron
: 调度表达式shardingTotalCount
: 分片总数cpuCount
/memoryMB
: 每个分片实例的资源需求
最佳实践建议
-
分片策略设计:
- 根据业务数据量合理设置分片总数
- 确保每个分片的处理负载均衡
- 考虑数据本地化原则,减少网络传输
-
资源规划:
- 准确评估作业的资源需求
- 为系统预留足够的资源余量
- 考虑作业并发执行时的资源争用情况
-
错误处理:
- 实现完善的异常处理机制
- 考虑作业失败后的重试策略
- 记录详细的执行日志便于排查问题
-
监控告警:
- 配置作业执行监控
- 设置关键指标告警阈值
- 定期检查作业执行历史
通过以上步骤,您已经完成了 ElasticJob-Cloud 的基本使用流程。根据实际业务需求,您可以进一步探索弹性伸缩、故障转移等高级特性。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考