thi-ng/geom 开源项目教程

thi.ng/geom是一个模块化且高效的几何图形处理库,用TypeScript编写,支持2D和3D对象,适用于数据可视化、游戏开发和科学可视化。它提供类型安全、模块化设计和优化算法,易与其他库集成,适合各种几何编程需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

thi-ng/geom 开源项目教程

geom 2D/3D geometry toolkit for Clojure/Clojurescript 项目地址: https://gitcode.com/gh_mirrors/ge/geom

1、项目介绍

thi-ng/geom 是一个用于 Clojure/ClojureScript 的 2D/3D 几何工具包。该项目提供了丰富的几何数据类型和一套多态的、基于协议的 API,用于转换和处理这些类型。thi-ng/geom 不仅支持在浏览器中使用 SVG 和 WebGL 进行可视化,还支持在桌面环境中使用 OpenGL。

主要特点

  • 2D/3D 向量和矩阵运算:提供全面且优化的 2D/3D 向量和矩阵运算。
  • 自定义向量类型:支持 GLSL 风格的向量混洗和完整的 Clojure 序列 API。
  • 统一 API:通过约 50 个多态协议定义的统一、易学且可扩展的核心 API。
  • OpenGL/WebGL 抽象:提供 OpenGL (v3.3+) 和 WebGL 的常用功能抽象,包括着色器、缓冲区和纹理工具。
  • 数据可视化:支持 2D 数据可视化,包括面积图、柱状图、折线图等。

2、项目快速启动

安装

首先,确保你已经安装了 Leiningen,然后通过以下命令将 thi-ng/geom 添加到你的项目依赖中:

[thi.ng/geom "1.0.1"]

示例代码

以下是一个简单的示例,展示如何使用 thi-ng/geom 创建一个 2D 向量并进行基本操作:

(ns my-app.core
  (:require [thi.ng.geom.core :as g]
            [thi.ng.geom.vector :as v]))

;; 创建一个 2D 向量
(def vec2 (v/vec2 1 2))

;; 向量加法
(def vec3 (g/+ vec2 (v/vec2 3 4)))

;; 打印结果
(println vec3) ;; 输出: #thi.ng.geom.vector.Vec2{:x 4, :y 6}

3、应用案例和最佳实践

应用案例

  • HOLO 杂志封面设计:使用 thi-ng/geom 进行复杂的几何计算和可视化,生成杂志封面。
  • Google DevArt Co(de)Factory:在艺术项目中使用 thi-ng/geom 进行几何建模和渲染。
  • Resonate 2015 工作坊:通过 thi-ng/geom 进行实时几何数据处理和可视化。

最佳实践

  • 模块化开发:利用 thi-ng/geom 的模块化设计,按需引入所需功能,避免不必要的依赖。
  • 性能优化:对于大规模几何数据处理,使用并行计算和优化算法,提高性能。
  • 文档和示例:参考项目提供的丰富示例和文档,快速上手并解决常见问题。

4、典型生态项目

  • thi-ng/shadergraph:用于声明式 GLSL 着色器规范和代码生成。
  • thi-ng/luxor:基于 thi-ng/geom 的 3D 渲染引擎,支持 WebGL 和 OpenGL。
  • thi-ng/morphogen:用于生成复杂几何形状和动画的工具包。

通过这些生态项目,thi-ng/geom 可以进一步扩展其功能,满足更复杂的几何处理和可视化需求。

geom 2D/3D geometry toolkit for Clojure/Clojurescript 项目地址: https://gitcode.com/gh_mirrors/ge/geom

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芮伦硕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值