BTS 项目使用教程

BTS 项目使用教程

bts 项目地址: https://gitcode.com/gh_mirrors/bt/bts

1. 项目目录结构及介绍

BTS 项目的目录结构如下:

bts/
├── pytorch/
│   ├── train.py
│   ├── test.py
│   ├── utils/
│   └── ...
├── tensorflow/
│   ├── train.py
│   ├── test.py
│   ├── utils/
│   └── ...
├── utils/
│   ├── extract_official_train_test_set_from_mat.py
│   └── ...
├── README.md
├── COPYING
└── ...

目录结构介绍

  • pytorch/: 包含 PyTorch 实现的训练和测试脚本,以及相关的工具函数。
  • tensorflow/: 包含 TensorFlow 实现的训练和测试脚本,以及相关的工具函数。
  • utils/: 包含一些通用的工具函数,例如数据集处理脚本。
  • README.md: 项目的基本介绍和使用说明。
  • COPYING: 项目的许可证文件。

2. 项目启动文件介绍

PyTorch 启动文件

  • train.py: 用于训练模型的脚本。可以通过命令行参数指定训练数据集、模型配置等。
  • test.py: 用于测试模型的脚本。可以通过命令行参数指定测试数据集、模型路径等。

TensorFlow 启动文件

  • train.py: 用于训练模型的脚本。可以通过命令行参数指定训练数据集、模型配置等。
  • test.py: 用于测试模型的脚本。可以通过命令行参数指定测试数据集、模型路径等。

3. 项目配置文件介绍

BTS 项目没有显式的配置文件,但可以通过命令行参数进行配置。以下是一些常用的命令行参数:

训练参数

  • --dataset_dir: 指定训练数据集的路径。
  • --model_name: 指定模型的名称。
  • --checkpoint_path: 指定模型检查点的保存路径。
  • --batch_size: 指定批处理大小。

测试参数

  • --dataset_dir: 指定测试数据集的路径。
  • --model_name: 指定模型的名称。
  • --checkpoint_path: 指定模型检查点的加载路径。
  • --output_dir: 指定测试结果的输出路径。

通过这些参数,用户可以灵活地配置训练和测试过程。

bts 项目地址: https://gitcode.com/gh_mirrors/bt/bts

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芮伦硕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值