BTS 项目使用教程
bts 项目地址: https://gitcode.com/gh_mirrors/bt/bts
1. 项目目录结构及介绍
BTS 项目的目录结构如下:
bts/
├── pytorch/
│ ├── train.py
│ ├── test.py
│ ├── utils/
│ └── ...
├── tensorflow/
│ ├── train.py
│ ├── test.py
│ ├── utils/
│ └── ...
├── utils/
│ ├── extract_official_train_test_set_from_mat.py
│ └── ...
├── README.md
├── COPYING
└── ...
目录结构介绍
- pytorch/: 包含 PyTorch 实现的训练和测试脚本,以及相关的工具函数。
- tensorflow/: 包含 TensorFlow 实现的训练和测试脚本,以及相关的工具函数。
- utils/: 包含一些通用的工具函数,例如数据集处理脚本。
- README.md: 项目的基本介绍和使用说明。
- COPYING: 项目的许可证文件。
2. 项目启动文件介绍
PyTorch 启动文件
- train.py: 用于训练模型的脚本。可以通过命令行参数指定训练数据集、模型配置等。
- test.py: 用于测试模型的脚本。可以通过命令行参数指定测试数据集、模型路径等。
TensorFlow 启动文件
- train.py: 用于训练模型的脚本。可以通过命令行参数指定训练数据集、模型配置等。
- test.py: 用于测试模型的脚本。可以通过命令行参数指定测试数据集、模型路径等。
3. 项目配置文件介绍
BTS 项目没有显式的配置文件,但可以通过命令行参数进行配置。以下是一些常用的命令行参数:
训练参数
--dataset_dir
: 指定训练数据集的路径。--model_name
: 指定模型的名称。--checkpoint_path
: 指定模型检查点的保存路径。--batch_size
: 指定批处理大小。
测试参数
--dataset_dir
: 指定测试数据集的路径。--model_name
: 指定模型的名称。--checkpoint_path
: 指定模型检查点的加载路径。--output_dir
: 指定测试结果的输出路径。
通过这些参数,用户可以灵活地配置训练和测试过程。