探索流体动力学的新边界:JAX-Fluids

探索流体动力学的新边界:JAX-Fluids

JAXFLUIDS 项目地址: https://gitcode.com/gh_mirrors/ja/JAXFLUIDS

在计算机科学与工程的交汇点,JAX-Fluids是一个创新的开源项目,它为3D可压缩两相流的全微分计算流体力学(CFD)求解器提供了强大工具。这个包设计初衷是推动和简化机器学习(ML)与CFD的研究结合,无论您是新手还是经验丰富的开发者,JAX-Fluids都能为您带来惊喜。

项目介绍

JAX-Fluids基于JAX库构建,可以无缝运行于CPU、GPU或TPU,并支持自动微分,实现了从模拟到优化的端到端流程。只需几行代码,您就能启动一个完整的流体模拟。项目提供详尽的文档,包括实现细节和数值方法,以及一系列示例,帮助您快速上手。

项目技术分析

项目的核心是一个采用有限体积法求解Navier-Stokes方程的高阶CFD求解器。目前版本支持:

  • 显式时间步进算法(Euler、RK2、RK3)
  • 高阶自适应空间重构(如WENO-3/5/7、WENO-CU6、WENO-3NN、TENO)
  • Riemann求解器(如Lax-Friedrichs、Rusanov、HLL、HLLC、Roe)
  • 隐含的湍流子网格尺度模型ALDM
  • 通过水平集方法进行两相模拟
  • 利用水平集方法处理沉浸固体边界
  • 外加力,用于控制温度、质量流量率和动能谱
  • 各种边界条件,包括对称、周期性、壁面、Dirichlet和Neumann条件

应用场景

JAX-Fluids适用于各种流体模拟,例如空间穿梭器在马赫2的速度下流动、冲击波与气泡相互作用,甚至复杂的水下气泡崩溃等。此外,即将推出的2.0版本将支持并行模拟和更多物理模型,扩展其应用范围。

项目特点

  • 易用性:简洁的API设计使得设置和运行模拟变得简单。
  • 灵活性:支持多种硬件平台,包括CPU、GPU和TPU,适应不同性能需求。
  • 全微分性:利用JAX的自动微分能力,可以轻松优化模型参数。
  • 持续更新:项目活跃,定期发布新功能和性能改进,如即将到来的JAX-Fluids 2.0。
  • 社区支持:由顶级研究团队维护,有详细的文档和示例支持,鼓励用户贡献和分享。

如果您正在寻找一个能够集成到ML框架中的高级流体模拟解决方案,或者想要探索新的科研领域,那么JAX-Fluids无疑是一个值得尝试的优秀选择。立即安装,开启您的流体动力学探索之旅吧!

JAXFLUIDS 项目地址: https://gitcode.com/gh_mirrors/ja/JAXFLUIDS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芮伦硕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值