推荐:ToxiGen - 面向隐性与对抗性仇恨言论检测的大型机器生成数据集
去发现同类优质开源项目:https://gitcode.com/
项目介绍
ToxiGen是一个创新性的开源项目,旨在通过大规模机器生成的数据集,推动隐性和对抗性仇恨言论的检测技术的发展。该项目由ALICE工具支持,可以对现有的内容审核系统进行压力测试和迭代优化,重点关注13个少数群体的隐性有毒语句。
项目技术分析
ToxiGen包含两种核心方法:
- 示范引导提示(Demonstration-Based Prompting):利用预训练的大规模语言模型(如GPT3),基于人类提供的针对不同少数群体的提示来生成更多数据。
- ALICE:在预训练语言模型和毒性分类器之间建立对抗性环境,生成挑战性示例以提升分类器性能。
项目还提供两种预训练的仇恨言论检测模型——HateBERT_ToxiGen 和 RoBERTa_ToxiGen,它们在ToxiGen数据集上经过微调,展现出显著的性能提升。
应用场景
ToxiGen适用于训练能够识别无明显辱骂词汇的微妙仇恨言论的分类器。它可应用于社交媒体监控、在线论坛管理、内容安全领域等,帮助减少对少数群体的隐性歧视和恶意言论。
项目特点
- 多样性:涵盖13个少数群体,以及从良性到隐性有毒的广泛语料。
- 对抗性学习:通过ALICE实现模型和生成器之间的动态博弈,提高检测准确度。
- 开放源代码:鼓励社区贡献,持续扩展数据集和应用场景。
- 便捷使用:通过HuggingFace平台轻松下载数据,并提供Python接口进行安装和使用。
获取ToxiGen
访问此网页或通过Python代码下载数据集。要使用源代码,可以通过pip install toxigen
安装。此外,项目提供了Jupyter Notebook样例,方便快速入门。
ToxiGen是AI伦理和负责任研究的一个重要步骤,它提醒我们,虽然机器学习在检测有害内容方面有很大潜力,但还需不断迭代和完善,以适应复杂多变的语言环境。参与并贡献于ToxiGen,让我们共同努力,构建更加包容和安全的网络空间。
去发现同类优质开源项目:https://gitcode.com/