regression-js:一个强大的JavaScript数据拟合库
项目地址:https://gitcode.com/gh_mirrors/re/regression-js
项目简介
regression-js
是一款专为简单数据分析设计的JavaScript模块。它集合了一系列线性最小二乘拟合方法,可以帮助你在浏览器或Node.js环境中对数据进行快速而准确的建模。无论是直线、指数曲线、对数曲线还是幂律曲线,regression-js
都能轻松应对。
项目技术分析
regression-js
提供了四个核心函数:
- linear:用于拟合直线方程
y = mx + c
。 - exponential:适用于指数增长或衰减的数据,拟合公式为
y = ae^bx
。 - logarithmic:处理对数关系的数据,拟合公式是
y = a + b ln x
。 - power:处理幂律分布的数据,拟合公式为
y = ax^b
。 - polynomial:可配置阶数的多项式拟合,公式为
anxn ... + a1x + a0
。
此外,所有拟合函数都返回包括系数、预测值、R2(决定系数)在内的详细结果,方便进一步的分析和应用。
应用场景
regression-js
可广泛应用于各种领域:
- 科研与工程:在科学研究中,对实验数据进行拟合可以揭示隐藏的趋势或模式。
- 经济学:分析市场趋势,如股票价格、经济增长等。
- 环境科学:气候模型、污染物扩散模拟等。
- 教育:帮助学生理解和可视化数学概念。
- 机器学习:作为初步的数据预处理工具。
项目特点
- 易用性:通过简单的导入和调用即可完成数据拟合,无需复杂的数学知识。
- 灵活性:支持多种类型的回归模型,并且多项式拟合的阶数可自定义。
- 跨平台:既能运行于Node.js,也能在浏览器端工作。
- 高性能:利用最少平方法高效计算最佳拟合曲线。
- 高度定制:允许用户设置拟合精度,忽略缺失值。
要开始使用,只需安装并通过以下代码导入:
npm install --save regression
然后,你可以选择合适的函数进行数据拟合,例如:
import regression from 'regression';
const result = regression.linear([[0, 1], [32, 67], [12, 79]]);
总之,无论你是数据分析师、程序员还是学者,regression-js
都是一个强大且易用的工具,值得你添加到你的开发工具箱中。立即尝试,让数据说话吧!
regression-js Curve Fitting in JavaScript. 项目地址: https://gitcode.com/gh_mirrors/re/regression-js