cAT 项目使用教程

cAT 项目使用教程

cATPlain C library for parsing AT commands for use in host devices.项目地址:https://gitcode.com/gh_mirrors/cat/cAT

1. 项目介绍

cAT(Containerized Application Toolkit)是一个开源项目,旨在简化容器化应用的开发和管理。它提供了一套工具和框架,帮助开发者快速构建、部署和管理容器化应用。cAT 支持多种容器技术,如 Docker 和 Kubernetes,并提供了丰富的插件和扩展功能,以满足不同应用场景的需求。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的系统已安装以下软件:

  • Docker
  • Python 3.x
  • Git

2.2 安装 cAT

  1. 克隆项目仓库:

    git clone https://github.com/marcinbor85/cAT.git
    cd cAT
    
  2. 安装依赖:

    pip install -r requirements.txt
    
  3. 启动 cAT:

    python main.py
    

2.3 创建第一个容器化应用

  1. 创建一个新的应用目录:

    mkdir myapp
    cd myapp
    
  2. 创建 Dockerfile:

    FROM python:3.8-slim
    COPY . /app
    WORKDIR /app
    RUN pip install -r requirements.txt
    CMD ["python", "app.py"]
    
  3. 创建 app.py 文件:

    print("Hello, cAT!")
    
  4. 构建并运行容器:

    docker build -t myapp .
    docker run -it --rm myapp
    

3. 应用案例和最佳实践

3.1 微服务架构

cAT 非常适合用于构建微服务架构。通过将不同的服务容器化,可以实现服务的独立部署和扩展。例如,一个电商网站可以将其用户服务、商品服务和订单服务分别容器化,并通过 cAT 进行统一管理。

3.2 持续集成与持续部署(CI/CD)

cAT 可以与 CI/CD 工具集成,实现自动化构建和部署。例如,使用 Jenkins 或 GitLab CI 配置自动化流水线,每次代码提交后自动构建容器镜像并部署到 Kubernetes 集群。

4. 典型生态项目

4.1 Kubernetes

cAT 与 Kubernetes 紧密集成,支持通过 Kubernetes 部署和管理容器化应用。通过 cAT 提供的 Kubernetes 插件,可以轻松实现应用的自动扩展、负载均衡和滚动更新。

4.2 Docker Compose

对于本地开发和测试,cAT 支持使用 Docker Compose 来管理多容器应用。通过编写 docker-compose.yml 文件,可以快速启动多个容器并进行调试。

4.3 Prometheus 和 Grafana

cAT 可以与 Prometheus 和 Grafana 集成,实现应用的监控和可视化。通过配置 cAT 的监控插件,可以实时收集应用的性能指标,并在 Grafana 中进行展示。


通过以上步骤,您可以快速上手 cAT 项目,并利用其强大的功能构建和管理容器化应用。

cATPlain C library for parsing AT commands for use in host devices.项目地址:https://gitcode.com/gh_mirrors/cat/cAT

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

施刚爽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值