RobustSTL:长时序数据鲁棒季节-趋势分解算法实战指南

RobustSTL:长时序数据鲁棒季节-趋势分解算法实战指南

RobustSTL Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) 项目地址: https://gitcode.com/gh_mirrors/ro/RobustSTL


项目介绍

RobustSTL 是一个非官方实现的鲁棒季节-趋势分解算法,专为处理具有长期季节性的复杂时间序列设计。该算法在 AAAI 2019 上发表,采用最小绝对偏差(LAD)损失函数并结合稀疏正则化来提取趋势,通过非局部季节性滤波增强对季节波动、趋势突变及异常值的鲁棒性,适合处理具有长期周期的时间序列数据。

  • 特性亮点

    • 强大的季节性波动和偏移处理能力。
    • 能够应对趋势中的突然变化,并保持对数据中异常点的鲁棒性。
    • 适用于季节性周期较长的序列。
  • 技术栈:Python 3.5.2 及以上版本


项目快速启动

首先确保安装必要的库,可以通过运行以下命令来准备环境:

pip3 install -r requirements.txt

接着,可以执行示例代码来体验 RobustSTL 的基本功能:

python3 main.py

这段代码将演示如何对一个时间序列进行分解,得到其趋势、季节性和残差部分。


应用案例和最佳实践

示例应用:合成样本分析

使用 sample_generator.py 生成一个合成时间序列样本,然后利用 main.pyrun_example.ipynb 来观察 RobustSTL 如何工作。

步骤

  1. 生成合成样本:

    python3 sample_generator.py
    
  2. 分解并分析结果: 打开 Jupyter Notebook 并运行 run_example.ipynb 文件,这将展示详细分解过程及结果。

参数调整

  • season_len: 定义季节长度。
  • reg1, reg2: 控制趋势提取的正则化参数。
  • K, H: 分别用于季节性提取的历史季节样本数和邻域大小。

通过调整这些参数,可以优化不同特性的数据分解效果,找到最佳的分解配置。


典型生态项目

尽管本项目为独立实现,但其可广泛应用于多个领域的时间序列分析,包括但不限于金融市场的趋势预测、气象数据分析以及工业生产监控等。开发者可以根据 RobustSTL 的设计理念,将其集成到数据分析管道中,或者作为预处理步骤,提升基于时间序列的机器学习模型的性能。

社区和研究者可以围绕 RobustSTL 进行二次开发,比如构建时间序列异常检测系统,或是集成至大数据处理框架中,进一步探索其在多变量时间序列上的应用潜力。


本指南旨在提供 RobustSTL 的入门级操作流程,深入理解和更高级的应用需要参考原始论文与源码细节,不断实验以适应特定应用场景的需求。通过这个起点,希望你能发现 RobustSTL 在处理复杂时间序列数据中的强大能力。

RobustSTL Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) 项目地址: https://gitcode.com/gh_mirrors/ro/RobustSTL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞿旺晟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值