paramount 开源项目使用教程

paramount 开源项目使用教程

paramount Agent accuracy measurements for LLMs 项目地址: https://gitcode.com/gh_mirrors/pa/paramount

本教程将引导您了解并使用 paramount 这一强大的工具,它旨在帮助您通过专家代理评估人工智能聊天质量,确保质量控制、捕获地面真相,并实施自动化回归测试。以下是关键模块的详细介绍:

1. 项目目录结构及介绍

- paramount             # 主项目根目录
    ├── dockerignore     # Docker 忽略文件
    ├── dockerfile       # Docker 配置文件,分为客户端和服务端
        ├── client        # 客户端Dockerfile
        ├── server        # 服务端Dockerfile
    ├── gitignore         # Git忽略文件
    ├── LICENSE           # 许可证文件,遵循GPL-3.0
    ├── MANIFEST.in      # 工程构建时包含文件清单
    ├── Makefile          # 构建和管理任务的脚本
    ├── README.md         # 项目主要文档,介绍项目功能和快速入门指南
    ├── example.py        # 示例脚本,展示如何集成paramount到您的代码中
    ├── paramount.toml.example  # 配置文件示例,指导如何设置输入输出参数等
    ├── setup.py          # Python包安装初始化文件
    ├── usage.gif         # 展示应用使用的动态图

项目核心在于其Python脚本和配置文件。example.py提供了一个简单的起点,而paramount.toml(或其示例)是定制行为的关键。

2. 项目的启动文件介绍

启动paramount项目并不直接涉及一个典型的单一“启动文件”,而是通过一系列步骤完成。然而,从开发角度来看,以下几个点至关重要:

  • 服务端启动:如果您选择不使用Docker,您需要确保您的AI函数已部署,且可以通过配置的URL访问。随后,运行paramount UI或API服务需按照配置进行。

  • 客户端集成:在Python项目中,通过pip install paramount后,引入装饰器@paramount.record()来标记您的AI逻辑函数,比如通过example.py示例进行快速集成。

  • Docker方式启动:

    • 使用提供的Dockerfile.server构建服务器容器:docker build -t paramount-server -f Dockerfile.server .
    • 运行该容器并将配置文件映射进来:docker run -dp 9001:9001 -v ${PWD}/paramount.toml:/app/paramount.toml paramount-server

3. 项目的配置文件介绍

配置文件paramount.toml是管理paramount行为的核心。以下是一些关键部分:

[record]
enabled = true            # 是否启用记录功能
function_url = "..."      # 指向您的AI服务的URL

[db]
type = "csv"               # 数据库类型,支持CSV或Postgres
[type.postgres]
connection_string = ""   # Postgres连接字符串(当选用Postgres时)

[api]
endpoint = "..."
port = ...                # paramount UI和API的服务端口

[ui]
meta_cols = ['recorded_at']
input_cols, output_cols = [...]
# 分别定义UI显示的元数据列,输入输出参数列,对应于您的AI函数输入输出

[chat]
# 针对聊天结构的配置,如OpenAI格式,描述如何展示对话
chat_list, chat_list_role_param, chat_list_content_param = "...", "...", "..."

此配置允许您自定义数据存储方式、API交互细节以及用户界面展示的内容,确保项目能够适应不同的应用场景需求。


综上所述,paramount项目通过灵活的配置和清晰的架构设计,为人工智能应用的质量保障提供了强大的支持。正确配置并集成到您的工作流后,可以显著提升AI系统的反馈循环效率和准确性。

paramount Agent accuracy measurements for LLMs 项目地址: https://gitcode.com/gh_mirrors/pa/paramount

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤琦珺Bess

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值