paramount 开源项目使用教程
paramount Agent accuracy measurements for LLMs 项目地址: https://gitcode.com/gh_mirrors/pa/paramount
本教程将引导您了解并使用 paramount
这一强大的工具,它旨在帮助您通过专家代理评估人工智能聊天质量,确保质量控制、捕获地面真相,并实施自动化回归测试。以下是关键模块的详细介绍:
1. 项目目录结构及介绍
- paramount # 主项目根目录
├── dockerignore # Docker 忽略文件
├── dockerfile # Docker 配置文件,分为客户端和服务端
├── client # 客户端Dockerfile
├── server # 服务端Dockerfile
├── gitignore # Git忽略文件
├── LICENSE # 许可证文件,遵循GPL-3.0
├── MANIFEST.in # 工程构建时包含文件清单
├── Makefile # 构建和管理任务的脚本
├── README.md # 项目主要文档,介绍项目功能和快速入门指南
├── example.py # 示例脚本,展示如何集成paramount到您的代码中
├── paramount.toml.example # 配置文件示例,指导如何设置输入输出参数等
├── setup.py # Python包安装初始化文件
├── usage.gif # 展示应用使用的动态图
项目核心在于其Python脚本和配置文件。example.py
提供了一个简单的起点,而paramount.toml
(或其示例)是定制行为的关键。
2. 项目的启动文件介绍
启动paramount
项目并不直接涉及一个典型的单一“启动文件”,而是通过一系列步骤完成。然而,从开发角度来看,以下几个点至关重要:
-
服务端启动:如果您选择不使用Docker,您需要确保您的AI函数已部署,且可以通过配置的URL访问。随后,运行paramount UI或API服务需按照配置进行。
-
客户端集成:在Python项目中,通过
pip install paramount
后,引入装饰器@paramount.record()
来标记您的AI逻辑函数,比如通过example.py
示例进行快速集成。 -
Docker方式启动:
- 使用提供的
Dockerfile.server
构建服务器容器:docker build -t paramount-server -f Dockerfile.server .
- 运行该容器并将配置文件映射进来:
docker run -dp 9001:9001 -v ${PWD}/paramount.toml:/app/paramount.toml paramount-server
- 使用提供的
3. 项目的配置文件介绍
配置文件paramount.toml
是管理paramount
行为的核心。以下是一些关键部分:
[record]
enabled = true # 是否启用记录功能
function_url = "..." # 指向您的AI服务的URL
[db]
type = "csv" # 数据库类型,支持CSV或Postgres
[type.postgres]
connection_string = "" # Postgres连接字符串(当选用Postgres时)
[api]
endpoint = "..."
port = ... # paramount UI和API的服务端口
[ui]
meta_cols = ['recorded_at']
input_cols, output_cols = [...]
# 分别定义UI显示的元数据列,输入输出参数列,对应于您的AI函数输入输出
[chat]
# 针对聊天结构的配置,如OpenAI格式,描述如何展示对话
chat_list, chat_list_role_param, chat_list_content_param = "...", "...", "..."
此配置允许您自定义数据存储方式、API交互细节以及用户界面展示的内容,确保项目能够适应不同的应用场景需求。
综上所述,paramount
项目通过灵活的配置和清晰的架构设计,为人工智能应用的质量保障提供了强大的支持。正确配置并集成到您的工作流后,可以显著提升AI系统的反馈循环效率和准确性。
paramount Agent accuracy measurements for LLMs 项目地址: https://gitcode.com/gh_mirrors/pa/paramount