Python金融分析实战:Altman Z"评分模型详解与应用
1. 什么是Altman Z"评分模型?
Altman Z"评分模型(又称Altman Z双素数评分)是纽约大学Edward Altman教授于1968年提出的经典财务风险预测模型。这个模型通过分析公司的财务指标来评估其破产风险,是信用风险分析领域最具影响力的工具之一。
Z"评分模型特别适用于非制造业上市公司,它通过四个关键财务比率构建了一个综合评分系统:
- 营运资本/总资产(X₁):衡量公司短期流动性
- 留存收益/总资产(X₂):反映公司累积盈利能力
- 息税前利润/总资产(X₃):评估资产运营效率
- 股东权益市值/总负债(X₄):体现市场对公司价值的评估
2. 模型数学表达式
Z"评分的计算公式为:
$$ Z” = 6.56x_1 +3.26x_2 + 6.72x_3 + 1.05x_4 $$
其中:
- $x_1$ = 营运资本 / 总资产
- $x_2$ = 留存收益 / 总资产
- $x_3$ = 息税前利润 / 总资产
- $x_4$ = 股东权益市值 / 总负债
3. Python实现步骤详解
3.1 环境准备
首先需要安装必要的Python库:
import pyEX as p # 用于获取金融数据的库
import numpy as np # 数值计算库
# 初始化API客户端
c = p.Client(api_token="你的API密钥", version="v1")
3.2 获取财务数据
我们需要获取公司的三大财务报表数据:
ticker = "aapl" # 以苹果公司为例
# 获取财务报表数据
incomeStatement = c.incomeStatementDF(ticker) # 利润表
balanceSheet = c.balanceSheetDF(ticker) # 资产负债表
stats = c.keyStats(ticker) # 关键统计数据
3.3 计算各指标分量
# 计算x1:营运资本/总资产
x1 = (balanceSheet["currentAssets"][0] - balanceSheet["totalCurrentLiabilities"][0]) / balanceSheet["totalAssets"][0]
# 计算x2:留存收益/总资产
x2 = balanceSheet["retainedEarnings"][0] / balanceSheet["totalAssets"][0]
# 计算x3:EBIT/总资产
x3 = incomeStatement["ebit"][0] / balanceSheet["totalAssets"][0]
# 计算x4:市值/总负债
x4 = stats["marketcap"] / balanceSheet["totalLiabilities"][0]
3.4 计算Z"评分
z_score = 6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4
4. 封装为函数
为了便于重复使用,我们可以将上述计算过程封装为函数:
def altmanZDoublePrime(ticker):
'''
计算给定股票的Altman Z"评分
参数:
ticker (str): 股票代码,不区分大小写
返回:
float: 计算得到的Z"评分
'''
incomeStatement = c.incomeStatementDF(ticker)
balanceSheet = c.balanceSheetDF(ticker)
stats = c.keyStats(ticker)
x1 = (balanceSheet["currentAssets"][0] - balanceSheet["totalCurrentLiabilities"][0]) / balanceSheet["totalAssets"][0]
x2 = balanceSheet["retainedEarnings"][0] / balanceSheet["totalAssets"][0]
x3 = incomeStatement["ebit"][0] / balanceSheet["totalAssets"][0]
x4 = stats["marketcap"] / balanceSheet["totalLiabilities"][0]
return 6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4
5. 评分与信用评级映射
原始的Z"评分有三个风险区间:
- 高于2.6:健康
- 1.1-2.6:灰色区域
- 低于1.1:高风险
现代应用中,我们可以将Z"评分映射到标准信用评级:
def altmanZDPImpliedRating(ticker):
'''
根据Altman Z"评分推断信用评级
参数:
ticker (str): 股票代码
返回:
str: 对应的信用评级
'''
adjZScore = 3.25 + altmanZDoublePrime(ticker)
zMap = [8.15, 7.6, 7.3, 7., 6.85, 6.65, 6.4, 6.25, 5.85, 5.65,
5.25, 4.95, 4.75, 4.5, 4.15, 3.75, 3.2, 2.5, 1.75]
scores = ["AAA", "AA+", "AA", "AA-", "A+", "A", "A-", "BBB+", "BBB", "BBB-",
"BB+", "BB", "BB-", "B+", "B", "B-", "CCC+", "CCC", "CCC-", "D"]
return scores[zMap.index(np.array(zMap)[np.array(zMap) < adjZScore].max())]
6. 实际应用示例
让我们以苹果公司(AAPL)为例进行计算:
# 计算苹果公司的Z"评分
aapl_z_score = altmanZDoublePrime("aapl")
print(f"苹果公司的Altman Z\"评分为: {aapl_z_score:.2f}")
# 获取对应的信用评级
aapl_rating = altmanZDPImpliedRating("aapl")
print(f"对应的信用评级为: {aapl_rating}")
7. 模型解读与注意事项
-
评分解读:Z"评分越高,公司财务健康状况越好,违约风险越低。
-
行业差异:不同行业的评分标准可能有所差异,使用时需要考虑行业特性。
-
数据时效性:财务数据具有时效性,应使用最新数据计算。
-
局限性:模型主要基于历史财务数据,可能无法完全反映公司未来风险。
-
中国市场应用:在中国市场使用时,可能需要根据本地财务特点进行适当调整。
8. 扩展应用
这个模型可以扩展应用于:
- 投资组合风险评估
- 信用风险管理
- 企业财务健康监测
- 并购目标评估
通过Python实现Altman Z"评分模型,金融分析师可以快速评估大量上市公司的财务风险,为投资决策提供量化依据。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考