Python金融分析实战:Altman Z"评分模型详解与应用

Python金融分析实战:Altman Z"评分模型详解与应用

python-training Python training for business analysts and traders python-training 项目地址: https://gitcode.com/gh_mirrors/py/python-training

1. 什么是Altman Z"评分模型?

Altman Z"评分模型(又称Altman Z双素数评分)是纽约大学Edward Altman教授于1968年提出的经典财务风险预测模型。这个模型通过分析公司的财务指标来评估其破产风险,是信用风险分析领域最具影响力的工具之一。

Z"评分模型特别适用于非制造业上市公司,它通过四个关键财务比率构建了一个综合评分系统:

  1. 营运资本/总资产(X₁):衡量公司短期流动性
  2. 留存收益/总资产(X₂):反映公司累积盈利能力
  3. 息税前利润/总资产(X₃):评估资产运营效率
  4. 股东权益市值/总负债(X₄):体现市场对公司价值的评估

2. 模型数学表达式

Z"评分的计算公式为:

$$ Z” = 6.56x_1 +3.26x_2 + 6.72x_3 + 1.05x_4 $$

其中:

  • $x_1$ = 营运资本 / 总资产
  • $x_2$ = 留存收益 / 总资产
  • $x_3$ = 息税前利润 / 总资产
  • $x_4$ = 股东权益市值 / 总负债

3. Python实现步骤详解

3.1 环境准备

首先需要安装必要的Python库:

import pyEX as p  # 用于获取金融数据的库
import numpy as np  # 数值计算库

# 初始化API客户端
c = p.Client(api_token="你的API密钥", version="v1")

3.2 获取财务数据

我们需要获取公司的三大财务报表数据:

ticker = "aapl"  # 以苹果公司为例

# 获取财务报表数据
incomeStatement = c.incomeStatementDF(ticker)  # 利润表
balanceSheet = c.balanceSheetDF(ticker)       # 资产负债表
stats = c.keyStats(ticker)                    # 关键统计数据

3.3 计算各指标分量

# 计算x1:营运资本/总资产
x1 = (balanceSheet["currentAssets"][0] - balanceSheet["totalCurrentLiabilities"][0]) / balanceSheet["totalAssets"][0]

# 计算x2:留存收益/总资产
x2 = balanceSheet["retainedEarnings"][0] / balanceSheet["totalAssets"][0]

# 计算x3:EBIT/总资产
x3 = incomeStatement["ebit"][0] / balanceSheet["totalAssets"][0]

# 计算x4:市值/总负债
x4 = stats["marketcap"] / balanceSheet["totalLiabilities"][0]

3.4 计算Z"评分

z_score = 6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4

4. 封装为函数

为了便于重复使用,我们可以将上述计算过程封装为函数:

def altmanZDoublePrime(ticker):
    '''
    计算给定股票的Altman Z"评分
    
    参数:
        ticker (str): 股票代码,不区分大小写
        
    返回:
        float: 计算得到的Z"评分
    '''
    incomeStatement = c.incomeStatementDF(ticker)
    balanceSheet = c.balanceSheetDF(ticker)
    stats = c.keyStats(ticker)
    
    x1 = (balanceSheet["currentAssets"][0] - balanceSheet["totalCurrentLiabilities"][0]) / balanceSheet["totalAssets"][0]
    x2 = balanceSheet["retainedEarnings"][0] / balanceSheet["totalAssets"][0]
    x3 = incomeStatement["ebit"][0] / balanceSheet["totalAssets"][0]
    x4 = stats["marketcap"] / balanceSheet["totalLiabilities"][0]
    
    return 6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4

5. 评分与信用评级映射

原始的Z"评分有三个风险区间:

  • 高于2.6:健康
  • 1.1-2.6:灰色区域
  • 低于1.1:高风险

现代应用中,我们可以将Z"评分映射到标准信用评级:

def altmanZDPImpliedRating(ticker):
    '''
    根据Altman Z"评分推断信用评级
    
    参数:
        ticker (str): 股票代码
        
    返回:
        str: 对应的信用评级
    '''
    adjZScore = 3.25 + altmanZDoublePrime(ticker)
    zMap = [8.15, 7.6, 7.3, 7., 6.85, 6.65, 6.4, 6.25, 5.85, 5.65, 
            5.25, 4.95, 4.75, 4.5, 4.15, 3.75, 3.2, 2.5, 1.75]
    scores = ["AAA", "AA+", "AA", "AA-", "A+", "A", "A-", "BBB+", "BBB", "BBB-", 
              "BB+", "BB", "BB-", "B+", "B", "B-", "CCC+", "CCC", "CCC-", "D"]
    
    return scores[zMap.index(np.array(zMap)[np.array(zMap) < adjZScore].max())]

6. 实际应用示例

让我们以苹果公司(AAPL)为例进行计算:

# 计算苹果公司的Z"评分
aapl_z_score = altmanZDoublePrime("aapl")
print(f"苹果公司的Altman Z\"评分为: {aapl_z_score:.2f}")

# 获取对应的信用评级
aapl_rating = altmanZDPImpliedRating("aapl")
print(f"对应的信用评级为: {aapl_rating}")

7. 模型解读与注意事项

  1. 评分解读:Z"评分越高,公司财务健康状况越好,违约风险越低。

  2. 行业差异:不同行业的评分标准可能有所差异,使用时需要考虑行业特性。

  3. 数据时效性:财务数据具有时效性,应使用最新数据计算。

  4. 局限性:模型主要基于历史财务数据,可能无法完全反映公司未来风险。

  5. 中国市场应用:在中国市场使用时,可能需要根据本地财务特点进行适当调整。

8. 扩展应用

这个模型可以扩展应用于:

  • 投资组合风险评估
  • 信用风险管理
  • 企业财务健康监测
  • 并购目标评估

通过Python实现Altman Z"评分模型,金融分析师可以快速评估大量上市公司的财务风险,为投资决策提供量化依据。

python-training Python training for business analysts and traders python-training 项目地址: https://gitcode.com/gh_mirrors/py/python-training

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤琦珺Bess

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值