Python金融分析实战:Altman Z"评分模型详解与应用

Python金融分析实战:Altman Z"评分模型详解与应用

python-training Python training for business analysts and traders python-training 项目地址: https://gitcode.com/gh_mirrors/py/python-training

1. 什么是Altman Z"评分模型?

Altman Z"评分模型(又称Altman Z双素数评分)是纽约大学Edward Altman教授于1968年提出的经典财务风险预测模型。这个模型通过分析公司的财务指标来评估其破产风险,是信用风险分析领域最具影响力的工具之一。

Z"评分模型特别适用于非制造业上市公司,它通过四个关键财务比率构建了一个综合评分系统:

  1. 营运资本/总资产(X₁):衡量公司短期流动性
  2. 留存收益/总资产(X₂):反映公司累积盈利能力
  3. 息税前利润/总资产(X₃):评估资产运营效率
  4. 股东权益市值/总负债(X₄):体现市场对公司价值的评估

2. 模型数学表达式

Z"评分的计算公式为:

$$ Z” = 6.56x_1 +3.26x_2 + 6.72x_3 + 1.05x_4 $$

其中:

  • $x_1$ = 营运资本 / 总资产
  • $x_2$ = 留存收益 / 总资产
  • $x_3$ = 息税前利润 / 总资产
  • $x_4$ = 股东权益市值 / 总负债

3. Python实现步骤详解

3.1 环境准备

首先需要安装必要的Python库:

import pyEX as p  # 用于获取金融数据的库
import numpy as np  # 数值计算库

# 初始化API客户端
c = p.Client(api_token="你的API密钥", version="v1")

3.2 获取财务数据

我们需要获取公司的三大财务报表数据:

ticker = "aapl"  # 以苹果公司为例

# 获取财务报表数据
incomeStatement = c.incomeStatementDF(ticker)  # 利润表
balanceSheet = c.balanceSheetDF(ticker)       # 资产负债表
stats = c.keyStats(ticker)                    # 关键统计数据

3.3 计算各指标分量

# 计算x1:营运资本/总资产
x1 = (balanceSheet["currentAssets"][0] - balanceSheet["totalCurrentLiabilities"][0]) / balanceSheet["totalAssets"][0]

# 计算x2:留存收益/总资产
x2 = balanceSheet["retainedEarnings"][0] / balanceSheet["totalAssets"][0]

# 计算x3:EBIT/总资产
x3 = incomeStatement["ebit"][0] / balanceSheet["totalAssets"][0]

# 计算x4:市值/总负债
x4 = stats["marketcap"] / balanceSheet["totalLiabilities"][0]

3.4 计算Z"评分

z_score = 6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4

4. 封装为函数

为了便于重复使用,我们可以将上述计算过程封装为函数:

def altmanZDoublePrime(ticker):
    '''
    计算给定股票的Altman Z"评分
    
    参数:
        ticker (str): 股票代码,不区分大小写
        
    返回:
        float: 计算得到的Z"评分
    '''
    incomeStatement = c.incomeStatementDF(ticker)
    balanceSheet = c.balanceSheetDF(ticker)
    stats = c.keyStats(ticker)
    
    x1 = (balanceSheet["currentAssets"][0] - balanceSheet["totalCurrentLiabilities"][0]) / balanceSheet["totalAssets"][0]
    x2 = balanceSheet["retainedEarnings"][0] / balanceSheet["totalAssets"][0]
    x3 = incomeStatement["ebit"][0] / balanceSheet["totalAssets"][0]
    x4 = stats["marketcap"] / balanceSheet["totalLiabilities"][0]
    
    return 6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4

5. 评分与信用评级映射

原始的Z"评分有三个风险区间:

  • 高于2.6:健康
  • 1.1-2.6:灰色区域
  • 低于1.1:高风险

现代应用中,我们可以将Z"评分映射到标准信用评级:

def altmanZDPImpliedRating(ticker):
    '''
    根据Altman Z"评分推断信用评级
    
    参数:
        ticker (str): 股票代码
        
    返回:
        str: 对应的信用评级
    '''
    adjZScore = 3.25 + altmanZDoublePrime(ticker)
    zMap = [8.15, 7.6, 7.3, 7., 6.85, 6.65, 6.4, 6.25, 5.85, 5.65, 
            5.25, 4.95, 4.75, 4.5, 4.15, 3.75, 3.2, 2.5, 1.75]
    scores = ["AAA", "AA+", "AA", "AA-", "A+", "A", "A-", "BBB+", "BBB", "BBB-", 
              "BB+", "BB", "BB-", "B+", "B", "B-", "CCC+", "CCC", "CCC-", "D"]
    
    return scores[zMap.index(np.array(zMap)[np.array(zMap) < adjZScore].max())]

6. 实际应用示例

让我们以苹果公司(AAPL)为例进行计算:

# 计算苹果公司的Z"评分
aapl_z_score = altmanZDoublePrime("aapl")
print(f"苹果公司的Altman Z\"评分为: {aapl_z_score:.2f}")

# 获取对应的信用评级
aapl_rating = altmanZDPImpliedRating("aapl")
print(f"对应的信用评级为: {aapl_rating}")

7. 模型解读与注意事项

  1. 评分解读:Z"评分越高,公司财务健康状况越好,违约风险越低。

  2. 行业差异:不同行业的评分标准可能有所差异,使用时需要考虑行业特性。

  3. 数据时效性:财务数据具有时效性,应使用最新数据计算。

  4. 局限性:模型主要基于历史财务数据,可能无法完全反映公司未来风险。

  5. 中国市场应用:在中国市场使用时,可能需要根据本地财务特点进行适当调整。

8. 扩展应用

这个模型可以扩展应用于:

  • 投资组合风险评估
  • 信用风险管理
  • 企业财务健康监测
  • 并购目标评估

通过Python实现Altman Z"评分模型,金融分析师可以快速评估大量上市公司的财务风险,为投资决策提供量化依据。

python-training Python training for business analysts and traders python-training 项目地址: https://gitcode.com/gh_mirrors/py/python-training

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/8947b2b6b560 八数码问题,即滑动拼图游戏,是计算机科学中一个经典的图灵完全问题,涉及搜索算法、状态空间复杂度和最优路径查找等核心概念。本项目利用Visual Studio 2017集成开发环境和MFC(Microsoft Foundation Classes)库,实现了八数码问题的求解,并提供了A*算法、全局择优搜索和宽度优先搜索三种搜索算法。以下将对相关知识点进行详细说明。 MFC是微软为Windows应用程序开发提供的一套基于C++的类库,能够简化Windows编程工作,方便开发者构建用户界面、处理系统消息及进行数据存储等。在本项目中,MFC用于创建图形用户界面(GUI),展示拼图状态并接收用户输入,为八数码问题的实现提供了友好的交互平台。 A*算法是一种启发式搜索算法,结合了最佳优先搜索(如Dijkstra算法)和贪婪最佳优先搜索,通过引入启发式函数来估计从当前节点到目标节点的最短路径,从而有效减少搜索空间,提高搜索效率。在八数码问题中,常用的启发式函数是曼哈顿距离或汉明距离,它们能够较好地评估每个状态目标状态的距离。 全局择优搜索,也称为全局最佳优先搜索,是一种优化策略。在搜索过程中,它始终选择当前最有希望的状态进行扩展。在八数码问题中,这意味着每次选取具有最低评估值(通常是启发式函数值加上已走步数)的状态进行下一步操作。 宽度优先搜索(BFS)是一种非启发式搜索策略,按照节点的层次进行扩展,优先考虑离起始状态近的节点。虽然BFS不直接考虑目标距离,但其能够保证找到的路径是最短的,对于八数码问题的解决也有重要意义,尤其是在所有状态距离目标状态的启发式值相同时。 在实现过程中,加入了计时功能,用于对比不同算法的运行效率,帮助理解在实际应用中如何根据问题特性和资源限制选择合适的算法。同时,显示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤琦珺Bess

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值