Scikit.js:JavaScript 中的机器学习库
Scikit.js 是一个开源项目,旨在为 JavaScript 提供一个用于预测数据分析和机器学习的库。该项目的主要编程语言是 TypeScript,它提供了类型安全,以及在浏览器和 Node.js 环境中的高性能执行。
核心功能
Scikit.js 的核心功能是模仿 Python 中的 scikit-learn 库,提供一个熟悉且强大的 API,以便用户能够在 JavaScript 环境中训练和部署模型。该库的通用数学运算由 Tensorflow.js 的核心层提供支持,以实现更快的计算速度。以下是它的一些关键特性:
- 数据预处理和特征提取
- 多种机器学习模型的实现,包括线性回归、逻辑回归、支持向量机等
- 模型评估指标,如均方误差、精确度、召回率等
- 模型的训练和预测功能
最近更新的功能
Scikit.js 项目最近的更新包括以下内容:
- 对底层 TensorFlow.js 的依赖进行了更新,以利用最新的优化和修复。
- 添加了新的机器学习算法和模型,扩展了库的功能范围。
- 改进了文档和示例代码,使得用户更容易理解和上手。
- 对一些已存在的模型和方法进行了性能优化和错误修复。
Scikit.js 的持续更新保证了它作为 JavaScript 机器学习库的领先地位,并为开发者提供了一个强大的工具,以在 Web 和服务器端进行数据分析和机器学习任务。