变换等变三维目标检测TED: 自动驾驶领域的革新

变换等变三维目标检测TED: 自动驾驶领域的革新

TED Transformation-Equivariant 3D Object Detection for Autonomous Driving 项目地址: https://gitcode.com/gh_mirrors/te/TED

项目介绍

TED(Transformation-Equivariant 3D Object Detection)是专为自动驾驶设计的一个改进版的3D对象检测框架。该项目基于OpenPCDet和CasA,并汲取了PENet和SFD的优点,强调转换等变稀疏卷积(TeSpConv)、变换等变鸟瞰图(TeBEV)池化以及多网格池化与多重细化策略,以高效地处理点云数据并生成轻量级的场景表示。TED支持LiDAR单模态及多模态(LiDAR+RGB)数据,提供了两种预训练模型TED-S与TED-M,分别对应不同的数据类型和性能需求。

项目快速启动

要开始使用TED,你需要首先搭建好合适的环境。以下步骤指导你从零开始设置项目:

环境配置

  1. 创建一个新的conda虚拟环境并激活:

    conda create -n ted_env python=3.9
    conda activate ted_env
    
  2. 安装必要的依赖库,包括PyTorch及一系列计算机视觉和深度学习工具包:

    pip install torch torchvision torchaudio -f https://download.pytorch.org/whl/torch_stable.html
    pip install numpy protobuf scikit-image waymo-open-dataset-tf-2-5-0 nuscenes-devkit spconv-cu111 numba ...
    

    (确保安装适合你的CUDA版本的spconv)

  3. 下载TED源码:

    git clone https://github.com/hailanyi/TED.git
    cd TED
    

数据准备

  • 准备KITTI数据集,并按照要求组织文件结构。
  • 如需多模态检测,还需要创建velodyne_depth数据集,可以通过预处理脚本或者下载预处理好的数据来完成。

运行示例

选择一个配置文件,例如,对于TED-S模型的训练,执行:

cd tools
python3 train.py --cfg_file cfgs/models/kitti/TED-S.yaml

此命令将启动单GPU训练过程。

应用案例和最佳实践

TED特别适用于自动驾驶车辆中的实时3D物体检测任务。通过调整网络参数和利用多模态数据,开发者可以优化模型以适应特定的行驶环境。最佳实践中,建议对特定城市环境进行微调,利用其变换等变特性提高对复杂道路状况的识别准确率。

典型生态项目

TED在自动驾驶领域内可与其他技术紧密结合,如高精度地图、传感器融合技术等。它能够作为核心组件被集成到自动驾驶系统中,与感知算法栈(如SLAM、路径规划)协同工作,提升整个系统的稳定性和安全性。此外,项目结合开放的数据集(如KITTI、NuScenes),促进了学术界和工业界之间的研究合作,推动自动驾驶技术的进步。


以上就是TED项目的基本介绍、快速启动指南、应用实例概览及在自动驾驶生态中的定位。希望这个指南能帮助你快速上手并深入探索TED的强大功能。

TED Transformation-Equivariant 3D Object Detection for Autonomous Driving 项目地址: https://gitcode.com/gh_mirrors/te/TED

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平奇群Derek

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值