PgQueuer使用教程
1. 项目目录结构及介绍
PgQueuer
是一个基于Python的高效作业队列库,利用PostgreSQL数据库进行工作调度。以下是该仓库的基本目录结构及其简要说明:
-
docs
包含项目的文档资料,访问 PgQueuer的在线文档 可获得详细信息。 -
pgqueuer
核心源代码所在目录,其中定义了处理队列管理的主要逻辑。 -
recipes
示例或推荐的使用案例和模式,帮助开发者快速上手。 -
test
单元测试相关文件,确保代码质量。 -
tools
含有示例脚本,如消费者(consumer)和生产者(producer)的运行脚本。 -
.gitignore
Git忽略文件,指定不应被版本控制的文件类型或文件夹。 -
CONTRIBUTING.md
对于希望贡献到项目中的开发者,提供了指导原则。 -
LICENSE
许可证文件,表明该项目遵循MIT开放源代码许可证。 -
README.md
项目简介,安装指南以及基本的使用示例。 -
docker-compose.yml, pyproject.toml, uv.lock, 等
Docker配置、项目依赖管理和其他配置文件。
2. 项目启动文件介绍
在 PgQueuer
中,并没有单一的“启动文件”像传统服务那样直接执行以启动整个系统。而是通过特定的命令或脚本来使用库功能。例如,用于运行消费者的典型命令是通过Python运行库提供的命令行工具:
python3 -m pgqueuer run tools/consumer/main
这表明你需要有一个名为 consumer/main.py
的消费者处理逻辑,并通过 pgqueuer run
命令来启动处理进程。
对于生产者来说,则可能使用类似下面的脚本启动:
python3 tools/producer.py <number_of_jobs>
这里 <number_of_jobs>
是你想要排队的任务数量。
3. 项目的配置文件介绍
PgQueuer
的核心配置并不直接通过传统的配置文件(如.ini
或.yaml
)管理,而是通过环境变量或在初始化时传递给驱动程序的连接字符串(DSN)。这意味着配置主要是关于如何设置你的PostgreSQL数据库连接。
例如,使用PostgreSQL数据库时,你需要在你的应用中设置正确的dsn
(数据源名称),通常是通过环境变量或代码中直接定义。简单示例如下:
import os
from pgqueuer.db import AsyncpgDriver
from pgqueuer.models import Job
dsn = os.environ.get('DB_CONN') # 假设这是从环境变量获取的DSN
driver = AsyncpgDriver(asyncpg.connect(dsn))
高级配置或自定义行为可以通过创建子类并覆盖QueueManager
类的方法或是利用环境变量来实现。具体配置细节应参考实际使用场景和官方文档提供的高级用法说明。