Deeplearn.js 开源项目教程
tfjs-core 项目地址: https://gitcode.com/gh_mirrors/tfj/tfjs-core
1. 项目的目录结构及介绍
Deeplearn.js 是一个用于在浏览器中执行深度学习的 JavaScript 库。以下是项目的目录结构及其简要介绍:
tfjs-core
: 核心代码库,包含了 WebGL 加速的机器学习算法、线性代数和自动微分功能。tfjs-backend-nodegl
: Node.js 环境下的后端实现,不依赖 WebGL。tfjs-backend-wasm
: WebAssembly 后端实现,用于提升性能。tfjs-react-native
: 用于 React Native 应用的 Deeplearn.js 绑定。tfjs-webgpu
: 使用 WebGPU 的后端实现,为未来浏览器提供更快性能。scripts
: 脚本文件,用于项目的构建和测试。.gitignore
: 指定 Git 忽略的文件和目录。CONTRIBUTING.md
: 为贡献者提供指南。DEVELOPMENT.md
: 开发者文档,包含开发指南。ISSUE_TEMPLATE.md
: 问题模板,用于提交新的问题。LICENSE
: Apache-2.0 许可证文件。README.md
: 项目描述和基本信息。WORKSPACE
: 构建配置文件。cloudbuild.yml
: Google Cloud Build 配置文件。package.json
: Node.js 项目配置文件。pull_request_template.md
: 拉取请求模板。tfjs.code-workspace
: Visual Studio Code 工作区配置。tsconfig.json
: TypeScript 配置文件。tslint.json
: TypeScript 代码风格配置文件。yarn.lock
: Yarn 锁定文件,确保依赖的一致性。
2. 项目的启动文件介绍
Deeplearn.js 的启动主要是通过 Node.js 脚本或构建工具进行。以下是一些主要的启动文件:
scripts/build.ts
: TypeScript 脚本,用于构建项目。scripts/test.ts
: TypeScript 脚本,用于运行测试。
要启动项目,通常需要运行以下命令:
yarn install # 安装依赖
yarn build # 构建项目
之后,可以在浏览器中查看示例或者通过 Node.js 运行测试。
3. 项目的配置文件介绍
项目的配置文件用于定义构建流程、代码风格和项目依赖等。
package.json
: 包含项目的依赖、脚本和元数据。例如,可以定义以下脚本:
"scripts": {
"build": "tsc",
"test": "jest"
}
tsconfig.json
: TypeScript 配置文件,定义了编译选项、包含和排除的文件等。
{
"compilerOptions": {
"target": "es5",
"module": "commonjs",
"strict": true
},
"include": [
"src/**/*"
],
"exclude": [
"node_modules",
"scripts"
]
}
tslint.json
: 定义 TypeScript 代码风格规则,帮助保持代码的一致性。
{
"extends": ["tslint:latest"],
"rules": {
"indent": [true, "spaces", 2],
"class-name": true,
"no-consecutive-blank-lines": true
}
}
通过以上文件,开发者可以了解如何开始使用 Deeplearn.js,以及如何配置和构建项目。
tfjs-core 项目地址: https://gitcode.com/gh_mirrors/tfj/tfjs-core