Tiledesk Design Studio 开源项目使用教程

Tiledesk Design Studio 开源项目使用教程

design-studio Tiledesk's open-source visual, no-code designer where LLM/GPT AI meets a flexible 'graph' approach. Create conversations and automations effortlessly – a Voiceflow and Botpress alternative. 项目地址: https://gitcode.com/gh_mirrors/de/design-studio

本教程将引导您了解并使用从 GitHub 上获取的 Tiledesk Design Studio 开源项目。此项目提供了一个无代码的设计环境,旨在简化聊天机器人和对话式应用的创建过程,充分利用LLM/GPT AI技术结合灵活的图形化设计方法。

1. 项目目录结构及介绍

Tiledesk Design Studio 的项目结构精心组织,以支持其丰富的功能和灵活的扩展性。下面是关键的目录及其简介:

.
├── angular.json        # Angular配置文件,控制构建和开发服务器设置
├── browserslist        # 指定兼容哪些浏览器的配置
├── deploy_pre.sh       # 部署前脚本,可能用于预处理
├── deploy_prod.sh      # 生产环境部署脚本
├── editorconfig        # 编辑器配置文件,保持代码风格一致
├── gitignore           # Git忽略文件列表
├── karma.conf.js       # 单元测试配置文件
├── nginx.conf          # Nginx服务器配置文件(如果在本地或自托管时使用)
├── package-lock.json   # npm包依赖的具体版本锁定文件
├── package.json        # 项目配置和依赖管理文件
├── README.md           # 项目说明文件,包括安装步骤、主要特点等
├── src                 # 主要源码目录
│   ├── app             # 应用的核心逻辑和组件
│   ├── assets          # 静态资源文件,如图片、字体等
│   ├── environments    # 环境特定配置,通常有environment.prod.ts和environment.ts
│   ├── index.html      # 应用的入口HTML文件
│   └── ...             # 其他按需的子目录和文件
├── tsconfig.*.json     # TypeScript编译配置文件,针对不同场景
└── ...

2. 项目的启动文件介绍

主要启动命令来自npm或者yarn脚本。 要运行项目,关注的是package.json中的脚本部分,尤其是:

  • ng serve: 这是启动开发服务器的主要命令。它监听源代码变化并实时重新加载页面,非常适合开发阶段。执行这个命令后,应用会在http://localhost:4200/上运行。

3. 项目的配置文件介绍

angular.json

这是Angular项目的全局配置文件,定义了项目构建和开发服务器的行为,包括输出路径、样式预处理器的选择、优化选项以及多个构建配置(例如开发和生产环境)。

.env(未直接列出但常见于类似项目)

虽然在提供的链接中未直接提及.env文件,但在实际项目中,环境变量的配置通常通过.env文件或其他指定方式完成,用于存储API密钥、数据库URL等敏感信息。对于Tiledesk Design Studio,特定的配置如tiledesk_token应该通过其他指示方式进行存储(如本地存储),而非直接放在版本控制系统中。

src/environments/*

这里包含环境变量的两个主要文件:environment.tsenvironment.prod.ts,用来区分开发环境和生产环境的配置。重要配置项比如API基础URL会在这里定义,确保发布时使用正确的配置。

其他配置文件

  • tsconfig.json 和相关特定配置文件,指导TypeScript编译过程。
  • karma.conf.js 控制单元测试的执行配置。
  • 特殊脚本如deploy_pre.shdeploy_prod.sh用于自动化部署过程的准备和实施。

请注意,在具体操作项目之前,还需遵循README.md内的详细指南,确保环境搭建正确,并理解如何正确集成到Tiledesk平台进行认证和使用。

design-studio Tiledesk's open-source visual, no-code designer where LLM/GPT AI meets a flexible 'graph' approach. Create conversations and automations effortlessly – a Voiceflow and Botpress alternative. 项目地址: https://gitcode.com/gh_mirrors/de/design-studio

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

解然嫚Keegan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值