自动链状思维提示在大型语言模型中(Auto-CoT)
auto-cot项目地址:https://gitcode.com/gh_mirrors/aut/auto-cot
1. 项目目录结构及介绍
以下是auto-cot
项目的典型目录结构:
auto-cot/
│
├── data/ # 存储数据集和预处理脚本的目录
│ ├── raw_data/ # 原始数据文件
│ └── processed_data/ # 预处理后的数据
│
├── models/ # 模型相关代码,包括模型定义和训练
│
├── prompts/ # 包含自动创建的CoT提示
│
├── scripts/ # 脚本和工具,用于执行任务如数据下载、训练等
│
├── src/ # 项目的主要源代码库
│ ├── utils/ # 工具函数和类
│ ├── dataset/ # 数据加载和处理模块
│ ├── prompter/ # CoT提示生成器
│ ├── trainer/ # 训练循环和评估模块
│ └── config/ # 配置文件
│
├── requirements.txt # 依赖项列表
├── README.md # 项目简介和指南
└── main.py # 主入口文件,启动项目
2. 项目的启动文件介绍
main.py
是项目的主入口文件,通常负责以下功能:
- 加载配置
- 设置日志记录
- 准备数据集
- 初始化模型
- 根据配置运行不同的模式,如训练、验证或测试
- 使用
prompter
模块生成自动CoT提示 - 应用这些提示于大型语言模型以进行推理或训练
在运行main.py
之前,确保已经正确安装了所有依赖项并设置了环境。
python main.py --config conf/config.yaml
其中,--config
参数指定配置文件路径。
3. 项目的配置文件介绍
config.yaml
是项目的配置文件,它包含了模型参数、训练设置和其他关键选项。典型的配置文件可能包含以下部分:
model:
name: gpt3 # 语言模型的名字
version: 1.3.0 # 语言模型的版本
tokenizer: # 令牌化器相关设置
type: GPT2TokenizerFast
model_path: /path/to/tokenizer
dataset:
train_file: data/train.jsonl
validation_file: data/valid.jsonl
test_file: data/test.jsonl
prompt:
use_auto_cot: true # 是否使用自动CoT
num_steps: 5 # 生成CoT的步骤数
diversity_sampling: true # 是否启用多样性采样
training:
epochs: 5 # 训练轮数
batch_size: 8 # 批次大小
learning_rate: 1e-5 # 学习率
可以根据实际需求修改配置文件,以调整模型、数据、提示策略和训练设置。记得将任何绝对路径替换为实际的工作环境中的路径。
要查看完整详细的配置选项,可以查阅src/config
目录下的示例配置文件或其他相关文档。