自动链状思维提示在大型语言模型中(Auto-CoT)

自动链状思维提示在大型语言模型中(Auto-CoT)

auto-cot项目地址:https://gitcode.com/gh_mirrors/aut/auto-cot

1. 项目目录结构及介绍

以下是auto-cot项目的典型目录结构:

auto-cot/
│
├── data/           # 存储数据集和预处理脚本的目录
│   ├── raw_data/    # 原始数据文件
│   └── processed_data/ # 预处理后的数据
│
├── models/         # 模型相关代码,包括模型定义和训练
│
├── prompts/        # 包含自动创建的CoT提示
│
├── scripts/        # 脚本和工具,用于执行任务如数据下载、训练等
│
├── src/            # 项目的主要源代码库
│   ├── utils/      # 工具函数和类
│   ├── dataset/    # 数据加载和处理模块
│   ├── prompter/   # CoT提示生成器
│   ├── trainer/    # 训练循环和评估模块
│   └── config/     # 配置文件
│
├── requirements.txt  # 依赖项列表
├── README.md        # 项目简介和指南
└── main.py          # 主入口文件,启动项目

2. 项目的启动文件介绍

main.py是项目的主入口文件,通常负责以下功能:

  • 加载配置
  • 设置日志记录
  • 准备数据集
  • 初始化模型
  • 根据配置运行不同的模式,如训练、验证或测试
  • 使用prompter模块生成自动CoT提示
  • 应用这些提示于大型语言模型以进行推理或训练

在运行main.py之前,确保已经正确安装了所有依赖项并设置了环境。

python main.py --config conf/config.yaml

其中,--config参数指定配置文件路径。

3. 项目的配置文件介绍

config.yaml是项目的配置文件,它包含了模型参数、训练设置和其他关键选项。典型的配置文件可能包含以下部分:

model:
  name: gpt3       # 语言模型的名字
  version: 1.3.0   # 语言模型的版本
  tokenizer:      # 令牌化器相关设置
    type: GPT2TokenizerFast
    model_path: /path/to/tokenizer

dataset:
  train_file: data/train.jsonl
  validation_file: data/valid.jsonl
  test_file: data/test.jsonl

prompt:
  use_auto_cot: true  # 是否使用自动CoT
  num_steps: 5        # 生成CoT的步骤数
  diversity_sampling: true  # 是否启用多样性采样

training:
  epochs: 5           # 训练轮数
  batch_size: 8       # 批次大小
  learning_rate: 1e-5 # 学习率

可以根据实际需求修改配置文件,以调整模型、数据、提示策略和训练设置。记得将任何绝对路径替换为实际的工作环境中的路径。

要查看完整详细的配置选项,可以查阅src/config目录下的示例配置文件或其他相关文档。

auto-cot项目地址:https://gitcode.com/gh_mirrors/aut/auto-cot

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

解然嫚Keegan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值