Jazz Transformer 项目使用教程
1. 项目介绍
Jazz Transformer 是一个基于 Transformer-XL 深度学习模型的开源项目,专门用于创作爵士音乐(包括和弦进行和旋律)。该项目通过 TensorFlow 实现,旨在探索 AI 在音乐创作中的应用,并分析其不足之处。Jazz Transformer 的核心模型在 2020 年的 ISMIR 会议上发表,论文标题为 "The Jazz Transformer on the Front Line: Exploring the Shortcomings of AI-Composed Music through Quantitative Measures"。
2. 项目快速启动
2.1 环境准备
- Python 3.6 或更高版本
- 推荐使用带有 ≥2GB 内存的 GPU
2.2 安装依赖
pip3 install -r requirements.txt
2.3 下载预训练模型
./download_model.sh
2.4 生成音乐
python3 inference.py --model MODEL --temp TEMP --n_bars N_BARS output_midi
output_midi
: 输出 MIDI 文件的路径--model MODEL
: 训练好的模型检查点路径(默认使用下载的检查点)--temp TEMP
: 生成时的采样温度(默认值:1.2)--n_bars N_BARS
: 生成的节数(默认值:32)
2.5 从头训练模型
2.5.1 数据预处理
./data_preprocess.sh
2.5.2 训练模型
python3 train.py ckpt_dir log_file
ckpt_dir
: 保存检查点的目录log_file
: 日志文件路径
3. 应用案例和最佳实践
3.1 应用案例
Jazz Transformer 可以用于自动生成爵士音乐,适用于音乐创作、音乐教育、音乐治疗等领域。例如,音乐教育者可以使用该模型生成练习曲目,帮助学生更好地理解和学习爵士音乐的结构和风格。
3.2 最佳实践
- 调整温度参数:通过调整
--temp
参数,可以控制生成音乐的创造性和多样性。较高的温度值会生成更具创意的音乐,而较低的温度值则更接近训练数据的风格。 - 自定义数据集:用户可以根据自己的需求,使用自定义的爵士音乐数据集进行训练,以生成更符合特定风格的音乐。
4. 典型生态项目
4.1 相关项目
- MusDr: 该项目提供了用于评估机器生成音乐的度量标准,与 Jazz Transformer 结合使用,可以更全面地评估生成的音乐质量。
- Jazzomat Research Project: 该项目提供了 Weimar Jazz Database (WJazzD),是 Jazz Transformer 训练数据的主要来源。
4.2 生态系统
Jazz Transformer 作为 AI 音乐创作领域的一个开源项目,与其他相关项目共同构成了一个丰富的生态系统。这些项目不仅提供了数据和工具,还促进了学术研究和实际应用的结合,推动了 AI 在音乐创作中的发展。