Jazz Transformer 项目使用教程

Jazz Transformer 项目使用教程

jazz_transformer Transformer-XL for Jazz music composition. Paper: "The Jazz Transformer on the Front Line: Exploring the Shortcomings of AI-Composed Music through Quantitative Measures", ISMIR 2020 项目地址: https://gitcode.com/gh_mirrors/ja/jazz_transformer

1. 项目介绍

Jazz Transformer 是一个基于 Transformer-XL 深度学习模型的开源项目,专门用于创作爵士音乐(包括和弦进行和旋律)。该项目通过 TensorFlow 实现,旨在探索 AI 在音乐创作中的应用,并分析其不足之处。Jazz Transformer 的核心模型在 2020 年的 ISMIR 会议上发表,论文标题为 "The Jazz Transformer on the Front Line: Exploring the Shortcomings of AI-Composed Music through Quantitative Measures"。

2. 项目快速启动

2.1 环境准备

  • Python 3.6 或更高版本
  • 推荐使用带有 ≥2GB 内存的 GPU

2.2 安装依赖

pip3 install -r requirements.txt

2.3 下载预训练模型

./download_model.sh

2.4 生成音乐

python3 inference.py --model MODEL --temp TEMP --n_bars N_BARS output_midi
  • output_midi: 输出 MIDI 文件的路径
  • --model MODEL: 训练好的模型检查点路径(默认使用下载的检查点)
  • --temp TEMP: 生成时的采样温度(默认值:1.2)
  • --n_bars N_BARS: 生成的节数(默认值:32)

2.5 从头训练模型

2.5.1 数据预处理
./data_preprocess.sh
2.5.2 训练模型
python3 train.py ckpt_dir log_file
  • ckpt_dir: 保存检查点的目录
  • log_file: 日志文件路径

3. 应用案例和最佳实践

3.1 应用案例

Jazz Transformer 可以用于自动生成爵士音乐,适用于音乐创作、音乐教育、音乐治疗等领域。例如,音乐教育者可以使用该模型生成练习曲目,帮助学生更好地理解和学习爵士音乐的结构和风格。

3.2 最佳实践

  • 调整温度参数:通过调整 --temp 参数,可以控制生成音乐的创造性和多样性。较高的温度值会生成更具创意的音乐,而较低的温度值则更接近训练数据的风格。
  • 自定义数据集:用户可以根据自己的需求,使用自定义的爵士音乐数据集进行训练,以生成更符合特定风格的音乐。

4. 典型生态项目

4.1 相关项目

  • MusDr: 该项目提供了用于评估机器生成音乐的度量标准,与 Jazz Transformer 结合使用,可以更全面地评估生成的音乐质量。
  • Jazzomat Research Project: 该项目提供了 Weimar Jazz Database (WJazzD),是 Jazz Transformer 训练数据的主要来源。

4.2 生态系统

Jazz Transformer 作为 AI 音乐创作领域的一个开源项目,与其他相关项目共同构成了一个丰富的生态系统。这些项目不仅提供了数据和工具,还促进了学术研究和实际应用的结合,推动了 AI 在音乐创作中的发展。

jazz_transformer Transformer-XL for Jazz music composition. Paper: "The Jazz Transformer on the Front Line: Exploring the Shortcomings of AI-Composed Music through Quantitative Measures", ISMIR 2020 项目地址: https://gitcode.com/gh_mirrors/ja/jazz_transformer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒋素萍Marilyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值