Med-DDPM开源项目使用教程
med-ddpm 项目地址: https://gitcode.com/gh_mirrors/me/med-ddpm
1. 项目介绍
Med-DDPM 是一个基于 PyTorch 的开源项目,它实现了用于生成语义 3D 脑部 MRI 图像的条件扩散模型。该模型能够在保持图像质量的同时,生成具有语义信息的医学图像。项目专注于全头 MRI 和脑提取的 4 种模态 MRI(T1、T1ce、T2、Flair)的合成,已在 BraTS2021 数据集上进行了训练。
2. 项目快速启动
环境准备
确保您的系统中安装了以下依赖库:
- Torchio
- Nibabel
可以使用以下命令安装:
pip install -r requirements.txt
训练模型
根据您要训练的 MRI 类型,运行相应的训练脚本:
- 全头 MRI 合成:
./scripts/train.sh
- 4 模态 MRI 合成(BraTS2021):
./scripts/train_brats.sh
生成图像
生成图像的步骤如下:
- 设置学习权重文件路径:
--weightfile [权重文件路径]
- 指定输入掩码文件:
--inputfolder [掩码文件夹路径]
- 全头 MRI 合成:
./scripts/sample.sh
- 4 模态 MRI 合成(BraTS2021):
./scripts/sample_brats.sh
3. 应用案例和最佳实践
在实际应用中,Med-DDPM 可用于医学图像的合成和分析。以下是一些应用案例和最佳实践:
- 使用 BraTS2021 数据集进行 4 模态 MRI 的合成。
- 修改
dataset.py
中的read_image
函数以支持其他图像格式。 - 如果您的数据集包含超过 3 个分割标签类别,请更新
train.py
、datasets.py
和utils/dtypes.py
中的通道配置。
4. 典型生态项目
Med-DDPM 项目的生态中,以下是一些典型的相关项目:
- denoising-diffusion-pytorch: 一个用于去噪扩散模型的 PyTorch 实现。
- guided-diffusion: 一个用于引导扩散模型的实现。
在使用这些项目时,请确保遵循相应的使用指南和协议。