Med-DDPM开源项目使用教程

Med-DDPM开源项目使用教程

med-ddpm med-ddpm 项目地址: https://gitcode.com/gh_mirrors/me/med-ddpm

1. 项目介绍

Med-DDPM 是一个基于 PyTorch 的开源项目,它实现了用于生成语义 3D 脑部 MRI 图像的条件扩散模型。该模型能够在保持图像质量的同时,生成具有语义信息的医学图像。项目专注于全头 MRI 和脑提取的 4 种模态 MRI(T1、T1ce、T2、Flair)的合成,已在 BraTS2021 数据集上进行了训练。

2. 项目快速启动

环境准备

确保您的系统中安装了以下依赖库:

  • Torchio
  • Nibabel

可以使用以下命令安装:

pip install -r requirements.txt

训练模型

根据您要训练的 MRI 类型,运行相应的训练脚本:

  • 全头 MRI 合成
./scripts/train.sh
  • 4 模态 MRI 合成(BraTS2021)
./scripts/train_brats.sh

生成图像

生成图像的步骤如下:

  • 设置学习权重文件路径
--weightfile [权重文件路径]
  • 指定输入掩码文件
--inputfolder [掩码文件夹路径]
  • 全头 MRI 合成
./scripts/sample.sh
  • 4 模态 MRI 合成(BraTS2021)
./scripts/sample_brats.sh

3. 应用案例和最佳实践

在实际应用中,Med-DDPM 可用于医学图像的合成和分析。以下是一些应用案例和最佳实践:

  • 使用 BraTS2021 数据集进行 4 模态 MRI 的合成。
  • 修改 dataset.py 中的 read_image 函数以支持其他图像格式。
  • 如果您的数据集包含超过 3 个分割标签类别,请更新 train.pydatasets.pyutils/dtypes.py 中的通道配置。

4. 典型生态项目

Med-DDPM 项目的生态中,以下是一些典型的相关项目:

  • denoising-diffusion-pytorch: 一个用于去噪扩散模型的 PyTorch 实现。
  • guided-diffusion: 一个用于引导扩散模型的实现。

在使用这些项目时,请确保遵循相应的使用指南和协议。

med-ddpm med-ddpm 项目地址: https://gitcode.com/gh_mirrors/me/med-ddpm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒋素萍Marilyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值