Synthetic Continued Pretraining 项目使用教程

Synthetic Continued Pretraining 项目使用教程

Synthetic_Continued_Pretraining Code implementation of synthetic continued pretraining Synthetic_Continued_Pretraining 项目地址: https://gitcode.com/gh_mirrors/sy/Synthetic_Continued_Pretraining

1. 项目目录结构及介绍

本项目包含了实现合成持续预训练(Synthetic Continued Pretraining)的完整代码。以下是项目的目录结构及其说明:

  • data/: 存放数据相关的文件,包括原始数据集、合成数据集以及处理数据的脚本。
  • evaluation.py: 评估持续预训练模型性能的脚本。
  • interactive.py: 启动与模型交互的聊天机器人的脚本。
  • LICENSE: 项目使用的Apache-2.0开源协议文件。
  • README.md: 项目的说明文件。
  • requirements.txt: 项目依赖的Python库列表。
  • scripts/: 包含启动训练过程的脚本文件。
  • train.py: 进行持续预训练的主脚本。
  • utils/: 存放一些通用的工具函数。

2. 项目的启动文件介绍

项目的启动主要依赖于scripts/train.sh脚本,以下是该脚本的用途和参数介绍:

  • train.sh: 该脚本用于启动持续预训练过程。以下是脚本的参数说明:
    • --lr: 设置峰值学习率。
    • --rr: 设置RedPajama重放率。
    • --epochs: 设置训练的总轮数。
    • --bs: 设置批量大小。
    • --wd: 设置权重衰减因子。
    • --warmup: 设置预热比例。
    • --task_name: 设置数据集选择(quality表示使用合成数据,instruct表示使用指令调整数据)。

运行脚本时需要使用chmod 777 scripts/train.sh来确保脚本具有执行权限。

3. 项目的配置文件介绍

项目中的配置文件主要用于设置API密钥和模型参数,以下是主要的配置文件介绍:

  • data/dataset/openai.key: 设置OpenAI API密钥,用于生成合成数据和模型评估。
  • data/dataset/cohere.key: 设置Cohere API密钥,用于检索增强生成(RAG)过程中的重排模型。
  • requirements.txt: 列出了项目所依赖的Python库,需要在项目环境中安装。

在开始使用项目之前,需要确保这些配置文件中填写了正确的API密钥。此外,根据项目的需求,可能还需要对train.pyevaluation.py中的参数进行相应的配置调整。

Synthetic_Continued_Pretraining Code implementation of synthetic continued pretraining Synthetic_Continued_Pretraining 项目地址: https://gitcode.com/gh_mirrors/sy/Synthetic_Continued_Pretraining

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

戴艺音

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值