黑暗之焰宇宙:乐高宇宙服务器仿真器

黑暗之焰宇宙:乐高宇宙服务器仿真器

去发现同类优质开源项目:https://gitcode.com/

Logo

简介

黑暗之焰宇宙(Darkflame Universe, DLU)是一个为乐高®宇宙游戏设计的服务器模拟器。自2013年起,经过多次迭代改进,现在可以提供几乎完美的游戏服务器模拟体验。

乐高®宇宙回顾

由NetDevil和乐高集团联合开发的乐高®宇宙于2010年10月发布,但在2012年1月遗憾地停止运营。DLU旨在让玩家重温这一经典游戏的乐趣。

许可协议

DLU遵循AGPLv3许可证,详细信息请查阅LICENSE文件。请注意以下要点:

  • 我们不对您使用代码产生的后果负责。
  • 代码提供“原样”且无任何保证。
  • 如果您修改并分发代码,必须公开改动。
  • 主机托管服务被视为代码分发,可能需要遵守额外的安全措施。

提示与免责声明

  • 安装难度:设置过程建议熟悉命令行环境,尤其是Unix-like系统。
  • 服务器托管:不建议公开托管服务器。DLU适合小规模部署,如朋友间的小型游戏群组,大规模部署可能存在安全风险。
  • 资源文件供应:DLU仅为服务器模拟器,不提供乐高®宇宙的游戏文件。您需要自行准备游戏客户端,我们无法提供,但可参考安全校验和列表来确认客户端兼容性。

单人服务器快速启动指南

如果你在Windows上,想建立一个仅限单人的游戏服务器,可以参考HailStorm的 Native Windows Setup Guide,跳过本README中的说明。

部署步骤概览

  1. 克隆仓库
  2. 安装依赖库
  3. 数据库配置
  4. 构建服务器
  5. 服务器配置
  6. 验证你的设置
  7. 运行服务器
  8. 用户指南

克隆仓库

在Windows上,你需要先下载并安装[Git](https://git-scm.com/download/win),然后运行以下命令:

git clone --recursive https://github.com/DarkflameUniverse/DarkflameServer

安装依赖库

  • Windows:确保已安装MSVC C++ 编译器(推荐)或Clang编译器,以及CMake(版本3.18或更高)。
  • MacOS:需安装brew,然后安装cmakegccmariadbopensslzlib
  • Linux:检查是否已安装gcczlib等基础包。在Ubuntu上,可能还需要zlib1g-devlibssl-dev以及openssl。还需安装mariadb-server作为MySQL数据库解决方案。

数据库配置

首先启动MariaDB。

  • Windows:默认已启用。
  • MacOS:运行brew services start mariadb
  • Linux:运行sudo systemctl start mysql(如果systemctl不可用,请尝试sudo service mysql start)。

在所有平台上,每次重启环境都需要执行此操作。

构建服务器

你可以直接运行build.sh脚本:

./build.sh

或者手动执行build.sh中列出的命令。为了加快速度,可添加-j<number>选项,其中number是你希望同时运行的编译任务数。例如,若要同时运行4个任务,命令将是:

./build.sh -j4

注意:根据操作系统,你可能需要在CMakeVariables.txt中调整一些预处理器定义。在MacOS上确保OPENSSL_ROOT_DIR指向openssl根目录,如果使用的是黑暗之焰宇宙客户端,确保client_net_versionbuild/sharedconfig.ini中设为171023。

服务器配置

  1. 必须配置:打开build/sharedconfig.ini,填充以下字段:
    • mysql_host:MariaDB服务器的IP地址或主机名(可能是localhost);如果端口不是3306(例如,在Windows上更改了端口),则应更改为tcp://localhost:portNum,其中portNum替换为你选择的MariaDB端口号。
    • mysql_database:服务器使用的数据库名称。
    • mysql_username:为服务器创建的用户名。
    • mysql_password:该用户的密码。
    • client_location:客户端文件的位置(应该是打包或解包的客户端文件夹路径)。
  2. 可选配置:包括authconfig.inichatconfig.inimasterconfig.iniworldconfig.ini在内的多个配置文件,可以根据需求进行设置。

验证你的设置

构建后的目录应如下所示:

  • AuthServer
  • ChatServer
  • MasterServer
  • WorldServer
  • authconfig.ini
  • chatconfig.ini
  • masterconfig.ini
  • sharedconfig.ini
  • worldconfig.ini
  • ...

运行服务器

如果一切配置正确,你可以在构建目录下运行MasterServer二进制文件。由于黑暗之焰宇宙使用低于1024的端口号,所以在Linux上,要么给AuthServer分配网络权限,要么以sudo运行。要赋予AuthServer网络权限而不需sudo,运行:

sudo setcap 'cap_net_bind_service=+ep' AuthServer

然后在build/masterconfig.ini中将use_sudo_auth设为0。

Linux服务

在基于Linux的系统上,运行程序会占用终端,限制其他任务的执行,且需保持终端开启。你可以通过systemd服务实现非交互式运行。首先复制示例文件:

cp ./systemd.example /etc/systemd/system/darkflame.service

然后编辑/etc/systemd/system/darkflame.service,修改UserGroup为运行服务器的用户,并更新ExecPath为服务器可执行文件的完整路径。

完成配置后,注册、启用并启动服务:

  • 刷新systemd管理器配置:
systemctl daemon-reload
  • 启动服务:
systemctl start darkflame.service
  • 开启或关闭开机启动:
systemctl enable|disable darkflame.service

黑暗之焰宇宙不仅提供了对乐高®宇宙游戏的强大模拟,还支持多平台部署和个性化配置。这是一个绝佳的机会,让你和朋友们重新探索那个充满想象力的乐高世界。立即加入,开始你的冒险之旅吧!

去发现同类优质开源项目:https://gitcode.com/

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
数据集介绍:36种动物目标检测数据集 一、基础信息 数据集名称:36种动物目标检测数据集 图片数量: - 训练集:6,719张图片 - 验证集:1,907张图片 - 测试集:962张图片 分类类别: 涵盖36种陆地及空中动物类别,包括但不限于: - 家畜类:Cattle(牛)、Sheep(羊)、Goat(山羊)、Pig(猪) - 野生哺乳类:Bear(熊)、Fox(狐)、Lynx(猞猁)、Otter(水獭) - 鸟类:Eagle(鹰)、Owl(猫头鹰)、Parrot(鹦鹉)、Swan(天鹅) - 小型动物:Rabbit(兔)、Mouse(鼠)、Hedgehog(刺猬)、Frog(蛙) 标注格式: YOLO格式,包含目标边界框坐标及类别索引,可直接用于主流深度学习框架训练。 二、适用场景 农业与畜牧业监测: 支持开发牲畜数量统计、健康监测系统,提升养殖场自动化管理水平。 生态保护与野生动物研究: 用于自然保护区动物分布监测、濒危物种识别等场景的AI模型训练。 智能安防系统: 集成至CCTV监控系统,检测农场/城市环境中特定动物(如Raccoon浣熊、Snake蛇类)的入侵。 教育科研工具: 为动物行为学、生物多样性研究提供标准化视觉数据资源。 三、数据集优势 跨场景物种覆盖: 同时包含家养动物与野生动物,覆盖空中/地面/洞穴物种,支持模型泛化能力训练。 精细化标注体系: 严格遵循YOLO标注标准,针对中小型动物(如Sparrow麻雀、Spider蜘蛛)提供高密度标注。 多环境适应性: 数据来源包含航拍(Aerial)、地面拍摄等多视角,适应复杂背景下的检测需求。 即用型数据划分: 按7:2:1比例预分割训练集/验证集/测试集,支持开箱即用的模型开发流程。 任务扩展潜力: 除目标检测外,可支持动物行为分析、种群密度估计等衍生任务开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

褚知茉Jade

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值