TinySleepNet 项目使用教程

TinySleepNet 项目使用教程

tinysleepnetTinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG by Akara Supratak and Yike Guo from The Faculty of ICT, Mahidol University and Imperial College London respectively项目地址:https://gitcode.com/gh_mirrors/ti/tinysleepnet

1. 项目的目录结构及介绍

TinySleepNet 项目的目录结构如下:

tinysleepnet/
├── config/
│   └── sleepedf.py
├── data/
│   └── ...
├── script/
│   └── ...
├── README.md
├── coding_log.md
├── data.py
├── logger.py
├── minibatching.py
├── model.py
├── network.py
├── predict.py
├── requirements.txt
├── sleepedf.txt
├── sleepedfx.txt
├── sleepstage.py
├── train.py
├── trainer.py
└── utils.py

目录结构介绍:

  • config/: 包含项目的配置文件。
  • data/: 存放数据文件。
  • script/: 包含一些脚本文件。
  • README.md: 项目说明文档。
  • coding_log.md: 编码日志。
  • data.py: 数据处理相关代码。
  • logger.py: 日志记录相关代码。
  • minibatching.py: 小批量数据处理相关代码。
  • model.py: 模型定义相关代码。
  • network.py: 网络结构相关代码。
  • predict.py: 预测相关代码。
  • requirements.txt: 项目依赖文件。
  • sleepedf.txt: 数据集相关信息。
  • sleepedfx.txt: 数据集相关信息。
  • sleepstage.py: 睡眠阶段处理相关代码。
  • train.py: 训练相关代码。
  • trainer.py: 训练器相关代码。
  • utils.py: 工具函数相关代码。

2. 项目的启动文件介绍

项目的启动文件主要是 train.pypredict.py

train.py

train.py 是用于训练模型的启动文件。可以通过以下命令运行:

python train.py --db sleepedf --gpu 0 --from_fold 0 --to_fold 19

predict.py

predict.py 是用于预测的启动文件。可以通过以下命令运行:

python predict.py --config_file config/sleepedf.py --model_dir out_sleepedf/train --output_dir out_sleepedf/predict --log_file out_sleepedf/predict.log --use-best --gpu 0

3. 项目的配置文件介绍

项目的配置文件位于 config/ 目录下,主要配置文件是 sleepedf.py

sleepedf.py

sleepedf.py 包含了项目的各种配置参数,如数据集路径、模型参数、训练参数等。以下是部分配置示例:

# 数据集路径
dataset_path = 'path/to/dataset'

# 模型参数
model_params = {
    'hidden_dim': 128,
    'num_layers': 2,
    'dropout': 0.5
}

# 训练参数
train_params = {
    'batch_size': 32,
    'epochs': 100,
    'learning_rate': 0.001
}

通过修改这些配置参数,可以调整模型的训练和预测行为。


以上是 TinySleepNet 项目的基本使用教程,希望对您有所帮助。

tinysleepnetTinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG by Akara Supratak and Yike Guo from The Faculty of ICT, Mahidol University and Imperial College London respectively项目地址:https://gitcode.com/gh_mirrors/ti/tinysleepnet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

褚知茉Jade

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值