TinySleepNet 项目使用教程
1. 项目的目录结构及介绍
TinySleepNet 项目的目录结构如下:
tinysleepnet/
├── config/
│ └── sleepedf.py
├── data/
│ └── ...
├── script/
│ └── ...
├── README.md
├── coding_log.md
├── data.py
├── logger.py
├── minibatching.py
├── model.py
├── network.py
├── predict.py
├── requirements.txt
├── sleepedf.txt
├── sleepedfx.txt
├── sleepstage.py
├── train.py
├── trainer.py
└── utils.py
目录结构介绍:
config/
: 包含项目的配置文件。data/
: 存放数据文件。script/
: 包含一些脚本文件。README.md
: 项目说明文档。coding_log.md
: 编码日志。data.py
: 数据处理相关代码。logger.py
: 日志记录相关代码。minibatching.py
: 小批量数据处理相关代码。model.py
: 模型定义相关代码。network.py
: 网络结构相关代码。predict.py
: 预测相关代码。requirements.txt
: 项目依赖文件。sleepedf.txt
: 数据集相关信息。sleepedfx.txt
: 数据集相关信息。sleepstage.py
: 睡眠阶段处理相关代码。train.py
: 训练相关代码。trainer.py
: 训练器相关代码。utils.py
: 工具函数相关代码。
2. 项目的启动文件介绍
项目的启动文件主要是 train.py
和 predict.py
。
train.py
train.py
是用于训练模型的启动文件。可以通过以下命令运行:
python train.py --db sleepedf --gpu 0 --from_fold 0 --to_fold 19
predict.py
predict.py
是用于预测的启动文件。可以通过以下命令运行:
python predict.py --config_file config/sleepedf.py --model_dir out_sleepedf/train --output_dir out_sleepedf/predict --log_file out_sleepedf/predict.log --use-best --gpu 0
3. 项目的配置文件介绍
项目的配置文件位于 config/
目录下,主要配置文件是 sleepedf.py
。
sleepedf.py
sleepedf.py
包含了项目的各种配置参数,如数据集路径、模型参数、训练参数等。以下是部分配置示例:
# 数据集路径
dataset_path = 'path/to/dataset'
# 模型参数
model_params = {
'hidden_dim': 128,
'num_layers': 2,
'dropout': 0.5
}
# 训练参数
train_params = {
'batch_size': 32,
'epochs': 100,
'learning_rate': 0.001
}
通过修改这些配置参数,可以调整模型的训练和预测行为。
以上是 TinySleepNet 项目的基本使用教程,希望对您有所帮助。