探索面部表情识别新高度:FER+

探索面部表情识别新高度:FER+

FERPlus This is the FER+ new label annotations for the Emotion FER dataset. 项目地址: https://gitcode.com/gh_mirrors/fe/FERPlus

在计算机视觉领域,准确识别和理解人类情感是关键任务之一。微软的开源项目FER+为这项挑战带来了一个全新的视角。这个项目不仅提供了一个经过精心标注的Emotion FER数据集增强版,还附带了训练代码,让研究人员能够构建更为精确的情感识别算法。

项目介绍

FER+是对经典Emotion FER数据集的重大升级,它引入了每个图像有10个标签的制度,以提高静态图像情绪识别的准确性。这些标签反映了不同观察者的情绪判断,从而能产生情绪概率分布或多标签输出,而不仅仅是单一标签。这种创新方法使得研究能够更全面地理解并处理复杂的人类情感表达。

FER与FER+对比

项目技术分析

该项目的核心在于其提供的**fer2013new.csv文件,它与原始fer2013.csv**文件保持相同的行数和顺序,使我们能够对应每张图片的标签。此外,它还包括了一个训练代码库,基于微软认知工具包(CNTK),支持多种训练模式:多数投票、概率、交叉熵和多目标。

应用场景

  • 情感分析:用于社交媒体监控、客户服务、智能机器人等场景,帮助理解和响应用户情绪。
  • 人机交互:提升虚拟现实、游戏体验,通过识别用户的面部表情进行动态反馈。
  • 健康监测:在医疗领域,可以帮助检测和诊断心理疾病,如抑郁症或自闭症。

项目特点

  1. 高质量标签:每个图像由10个人独立标注,提高了标签的准确性和多样性。
  2. 多模式训练:支持四种不同的训练模式,适应各种机器学习策略。
  3. 兼容性:利用CNTK,一个强大的深度学习框架,易于集成到现有工作流中。
  4. 便捷的数据准备:提供脚本将原始CSV文件转换为适合训练的PNG图像。

要启动训练,只需执行相应的Python命令,例如:

python train.py -d <dataset base folder> -m majority

对于那些希望在情感识别领域深入探索的人来说,FER+项目是一个理想的起点。无论是学术研究还是商业应用,都能从中受益匪浅。如果你使用此项目或代码,请引用相关论文,以尊重作者的贡献。

**@inproceedings{BarsoumICMI2016,
  title={Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution},
  author={Barsoum, Emad and Zhang, Cha and Canton Ferrer, Cristian and Zhang, Zhengyou},
  booktitle={ACM International Conference on Multimodal Interaction (ICMI)},
  year={2016}
}**

现在就加入FER+的世界,开启你的面部表情识别之旅吧!

FERPlus This is the FER+ new label annotations for the Emotion FER dataset. 项目地址: https://gitcode.com/gh_mirrors/fe/FERPlus

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邴联微

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值