探索面部表情识别新高度:FER+

探索面部表情识别新高度:FER+

FERPlus This is the FER+ new label annotations for the Emotion FER dataset. 项目地址: https://gitcode.com/gh_mirrors/fe/FERPlus

在计算机视觉领域,准确识别和理解人类情感是关键任务之一。微软的开源项目FER+为这项挑战带来了一个全新的视角。这个项目不仅提供了一个经过精心标注的Emotion FER数据集增强版,还附带了训练代码,让研究人员能够构建更为精确的情感识别算法。

项目介绍

FER+是对经典Emotion FER数据集的重大升级,它引入了每个图像有10个标签的制度,以提高静态图像情绪识别的准确性。这些标签反映了不同观察者的情绪判断,从而能产生情绪概率分布或多标签输出,而不仅仅是单一标签。这种创新方法使得研究能够更全面地理解并处理复杂的人类情感表达。

FER与FER+对比

项目技术分析

该项目的核心在于其提供的**fer2013new.csv文件,它与原始fer2013.csv**文件保持相同的行数和顺序,使我们能够对应每张图片的标签。此外,它还包括了一个训练代码库,基于微软认知工具包(CNTK),支持多种训练模式:多数投票、概率、交叉熵和多目标。

应用场景

  • 情感分析:用于社交媒体监控、客户服务、智能机器人等场景,帮助理解和响应用户情绪。
  • 人机交互:提升虚拟现实、游戏体验,通过识别用户的面部表情进行动态反馈。
  • 健康监测:在医疗领域,可以帮助检测和诊断心理疾病,如抑郁症或自闭症。

项目特点

  1. 高质量标签:每个图像由10个人独立标注,提高了标签的准确性和多样性。
  2. 多模式训练:支持四种不同的训练模式,适应各种机器学习策略。
  3. 兼容性:利用CNTK,一个强大的深度学习框架,易于集成到现有工作流中。
  4. 便捷的数据准备:提供脚本将原始CSV文件转换为适合训练的PNG图像。

要启动训练,只需执行相应的Python命令,例如:

python train.py -d <dataset base folder> -m majority

对于那些希望在情感识别领域深入探索的人来说,FER+项目是一个理想的起点。无论是学术研究还是商业应用,都能从中受益匪浅。如果你使用此项目或代码,请引用相关论文,以尊重作者的贡献。

**@inproceedings{BarsoumICMI2016,
  title={Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution},
  author={Barsoum, Emad and Zhang, Cha and Canton Ferrer, Cristian and Zhang, Zhengyou},
  booktitle={ACM International Conference on Multimodal Interaction (ICMI)},
  year={2016}
}**

现在就加入FER+的世界,开启你的面部表情识别之旅吧!

FERPlus This is the FER+ new label annotations for the Emotion FER dataset. 项目地址: https://gitcode.com/gh_mirrors/fe/FERPlus

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邴联微

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值