探索最优解:Cornell-MOE,工业级贝叶斯优化引擎

探索最优解:Cornell-MOE,工业级贝叶斯优化引擎

去发现同类优质开源项目:https://gitcode.com/

Cornell-MOE是一个用于贝叶斯优化(Bayesian Optimization)的高效包,由Python编写,并内含C++核心实现。这个包专为工业应用提供高性能的贝叶斯优化算法,包括并行优化、带导数的优化以及高效率的知识梯度收购函数。

贝叶斯优化是何方神圣?

贝叶斯优化是一种解决复杂优化问题的方法,它依赖于高斯过程回归来基于过去的评估估计目标函数,并通过收购函数决定下一步的采样点。虽然每个决策可能需要更长的时间,但它可以在较少的评估次数中找到好的解决方案,特别适合那些评价函数评估耗时或昂贵的情况。

何时选择贝叶斯优化?

当你面临以下场景时,考虑使用贝叶斯优化:

  1. 目标函数的评估耗时较长(分钟、小时或天),或者成本高昂。
  2. 目标函数是输入的连续函数。
  3. 函数无特殊结构,如凸性或凹性,无法利用特定优化方法。
  4. 输入可以表示为有限数量的向量,通常在20个输入以下的效果最好。
  5. 简单且快速评估的输入约束条件。
  6. 寻找全局最优而非局部最优。

此外,贝叶斯优化还可处理噪声评估、无导数信息等问题,并可利用现有评价数据和对目标的先验知识。

Cornell-MOE有什么独到之处?

Cornell-MOE从Yelp的MOE包发展而来,专注于易安装性和易用性。它添加了算法改进,如在高斯过程回归中对超参数的贝叶斯处理,增强了稳健性;并且支持了几个新的贝叶斯优化算法,包括支持导数的批量预期改善(d-EI)和知识梯度(d-KG,q-KG)。

一瞥示例

Cornell-MOE提供了两个演示:

  1. 批量贝叶斯优化:展示了1维无导数的嘈杂合成函数的优化,使用q-KG方法。左侧显示了统计模型和建议的评估点,右侧可视化了q-KG收购函数。
  2. 带导数的贝叶斯优化:比较了使用和不使用导数的两种方法(d-KG和d-EI),展示了使用导数如何提高探索效率。

安装简单快速

Cornell-MOE的安装过程清晰明了,包括对Ubuntu和CentOS的支持。我们还提供了针对Python 2和3用户的详细虚拟环境安装指南,以及使用Conda包的简便方式。

结论

无论你是研究者还是工程师,如果你正在寻找一个强大而易用的工具来解决需要智能优化的问题,Cornell-MOE无疑是一个理想的选择。其灵活性、高性能和广泛的应用场景,将帮助你在各种挑战性任务中找到最佳解决方案。立即尝试,开启你的优化之旅吧!

去发现同类优质开源项目:https://gitcode.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲍凯印Fox

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值