探索最优解:Cornell-MOE,工业级贝叶斯优化引擎
去发现同类优质开源项目:https://gitcode.com/
Cornell-MOE是一个用于贝叶斯优化(Bayesian Optimization)的高效包,由Python编写,并内含C++核心实现。这个包专为工业应用提供高性能的贝叶斯优化算法,包括并行优化、带导数的优化以及高效率的知识梯度收购函数。
贝叶斯优化是何方神圣?
贝叶斯优化是一种解决复杂优化问题的方法,它依赖于高斯过程回归来基于过去的评估估计目标函数,并通过收购函数决定下一步的采样点。虽然每个决策可能需要更长的时间,但它可以在较少的评估次数中找到好的解决方案,特别适合那些评价函数评估耗时或昂贵的情况。
何时选择贝叶斯优化?
当你面临以下场景时,考虑使用贝叶斯优化:
- 目标函数的评估耗时较长(分钟、小时或天),或者成本高昂。
- 目标函数是输入的连续函数。
- 函数无特殊结构,如凸性或凹性,无法利用特定优化方法。
- 输入可以表示为有限数量的向量,通常在20个输入以下的效果最好。
- 简单且快速评估的输入约束条件。
- 寻找全局最优而非局部最优。
此外,贝叶斯优化还可处理噪声评估、无导数信息等问题,并可利用现有评价数据和对目标的先验知识。
Cornell-MOE有什么独到之处?
Cornell-MOE从Yelp的MOE包发展而来,专注于易安装性和易用性。它添加了算法改进,如在高斯过程回归中对超参数的贝叶斯处理,增强了稳健性;并且支持了几个新的贝叶斯优化算法,包括支持导数的批量预期改善(d-EI)和知识梯度(d-KG,q-KG)。
一瞥示例
Cornell-MOE提供了两个演示:
- 批量贝叶斯优化:展示了1维无导数的嘈杂合成函数的优化,使用q-KG方法。左侧显示了统计模型和建议的评估点,右侧可视化了q-KG收购函数。
- 带导数的贝叶斯优化:比较了使用和不使用导数的两种方法(d-KG和d-EI),展示了使用导数如何提高探索效率。
安装简单快速
Cornell-MOE的安装过程清晰明了,包括对Ubuntu和CentOS的支持。我们还提供了针对Python 2和3用户的详细虚拟环境安装指南,以及使用Conda包的简便方式。
结论
无论你是研究者还是工程师,如果你正在寻找一个强大而易用的工具来解决需要智能优化的问题,Cornell-MOE无疑是一个理想的选择。其灵活性、高性能和广泛的应用场景,将帮助你在各种挑战性任务中找到最佳解决方案。立即尝试,开启你的优化之旅吧!
去发现同类优质开源项目:https://gitcode.com/