Riskfolio-Lib 项目推荐
项目基础介绍和主要编程语言
Riskfolio-Lib 是一个用于量化战略资产配置和投资组合优化的 Python 库。该项目的目标是帮助学生、学者和从业者通过数学模型构建投资组合,同时降低复杂模型的使用难度。Riskfolio-Lib 基于 CVXPY 构建,并与 Pandas 数据结构紧密集成,使得用户能够轻松地进行投资组合优化。
项目核心功能
Riskfolio-Lib 提供了多种核心功能,包括:
- 均值-风险和对数均值-风险(Kelly 准则)投资组合优化:支持四种目标函数,包括最小风险、最大回报、最大效用函数和最大风险调整回报比率。
- 均值-风险和对数均值-风险(Kelly 准则)投资组合优化:支持22种凸风险度量,如标准差、平方根峰度、平均绝对偏差(MAD)、Gini 平均差(GMD)等。
- 风险平价投资组合优化:支持18种凸风险度量,如标准差、平方根峰度、平均绝对偏差(MAD)、Gini 平均差(GMD)等。
- 层次聚类投资组合优化:包括层次风险平价(HRP)和层次等风险贡献(HERC),支持24种风险度量。
- 嵌套聚类优化(NCO):支持四种目标函数和可用风险度量。
- 其他优化功能:包括最坏情况均值方差投资组合优化、宽松风险平价投资组合优化、有序加权平均(OWA)投资组合优化等。
项目最近更新的功能
Riskfolio-Lib 最近更新的功能包括:
- 新增风险度量:增加了多种新的风险度量,如条件价值-风险范围(CVaR Range)、尾部 Gini 范围(Tail Gini Range)等。
- 优化算法改进:对现有的优化算法进行了改进,提升了计算效率和准确性。
- 用户界面改进:改进了用户界面,使得用户能够更直观地使用和配置各种优化模型。
- 文档更新:更新了项目文档,增加了更多示例和教程,帮助用户更好地理解和使用 Riskfolio-Lib。
通过这些更新,Riskfolio-Lib 进一步提升了其在量化投资和资产配置领域的应用价值,为用户提供了更强大的工具和更丰富的功能。