SparseNeRF项目安装与配置指南
SparseNeRF 项目地址: https://gitcode.com/gh_mirrors/sp/SparseNeRF
1. 项目基础介绍
SparseNeRF是一个用于novel view synthesis(新视角合成)的开源项目,它通过利用现实世界中不准确的深度观察,例如预训练的单目深度估计模型或消费者级别的深度传感器生成的粗糙深度图,来提高NeRF(神经辐射场)在新视角合成方面的性能。项目主要使用Python编程语言实现。
2. 项目使用的关键技术和框架
- NeRF(神经辐射场): 用于从有限视角的图片中重建三维场景的技术。
- Mip-NeRF: 作为NeRF的 backbone,用于提高渲染质量和效率。
- 深度先验蒸馏: 从粗糙的深度图中提取深度先验信息,引导NeRF的训练过程。
- 局部深度排序正则化: 确保NeRF预测的深度排序与粗糙深度图一致。
- 空间连续性正则化: 保持NeRF估计的深度在空间上的连续性。
3. 项目安装和配置的准备工作与详细步骤
准备工作
- 操作系统:Linux或macOS
- Python版本:Python 3.6.13
- GPU:NVIDIA GPU + CUDA cuDNN (10.1)
- OpenCV库
安装步骤
创建虚拟环境
conda create -n sparsenerf python=3.6.13
conda activate sparsenerf
安装依赖
pip install -r requirements.txt
安装JAX和CUDA
下载JAX与CUDA结合的wheel文件:
wget https://storage.googleapis.com/jax-releases/cuda101/jaxlib-0.1.68+cuda101-cp36-none-manylinux2010_x86_64.whl
安装wheel文件:
pip install jaxlib-0.1.68+cuda101-cp36-none-manylinux2010_x86_64.whl
rm jaxlib-0.1.68+cuda101-cp36-none-manylinux2010_x86_64.whl
安装PyTorch及相关包
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
安装timm库:
pip install timm
安装OpenCV:
pip install opencv-python
安装FFmpeg(用于视频合成)
pip install imageio-ffmpeg
至此,SparseNeRF项目的安装和配置工作基本完成。接下来,你可以根据项目提供的脚本和指南开始训练和测试你的NeRF模型。注意,实际操作中可能需要根据你的具体环境和需要进行适当的调整。
SparseNeRF 项目地址: https://gitcode.com/gh_mirrors/sp/SparseNeRF