SparseNeRF项目安装与配置指南

SparseNeRF项目安装与配置指南

SparseNeRF SparseNeRF 项目地址: https://gitcode.com/gh_mirrors/sp/SparseNeRF

1. 项目基础介绍

SparseNeRF是一个用于novel view synthesis(新视角合成)的开源项目,它通过利用现实世界中不准确的深度观察,例如预训练的单目深度估计模型或消费者级别的深度传感器生成的粗糙深度图,来提高NeRF(神经辐射场)在新视角合成方面的性能。项目主要使用Python编程语言实现。

2. 项目使用的关键技术和框架

  • NeRF(神经辐射场): 用于从有限视角的图片中重建三维场景的技术。
  • Mip-NeRF: 作为NeRF的 backbone,用于提高渲染质量和效率。
  • 深度先验蒸馏: 从粗糙的深度图中提取深度先验信息,引导NeRF的训练过程。
  • 局部深度排序正则化: 确保NeRF预测的深度排序与粗糙深度图一致。
  • 空间连续性正则化: 保持NeRF估计的深度在空间上的连续性。

3. 项目安装和配置的准备工作与详细步骤

准备工作

  • 操作系统:Linux或macOS
  • Python版本:Python 3.6.13
  • GPU:NVIDIA GPU + CUDA cuDNN (10.1)
  • OpenCV库

安装步骤

创建虚拟环境
conda create -n sparsenerf python=3.6.13
conda activate sparsenerf
安装依赖
pip install -r requirements.txt
安装JAX和CUDA

下载JAX与CUDA结合的wheel文件:

wget https://storage.googleapis.com/jax-releases/cuda101/jaxlib-0.1.68+cuda101-cp36-none-manylinux2010_x86_64.whl

安装wheel文件:

pip install jaxlib-0.1.68+cuda101-cp36-none-manylinux2010_x86_64.whl
rm jaxlib-0.1.68+cuda101-cp36-none-manylinux2010_x86_64.whl
安装PyTorch及相关包
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch

安装timm库:

pip install timm

安装OpenCV:

pip install opencv-python
安装FFmpeg(用于视频合成)
pip install imageio-ffmpeg

至此,SparseNeRF项目的安装和配置工作基本完成。接下来,你可以根据项目提供的脚本和指南开始训练和测试你的NeRF模型。注意,实际操作中可能需要根据你的具体环境和需要进行适当的调整。

SparseNeRF SparseNeRF 项目地址: https://gitcode.com/gh_mirrors/sp/SparseNeRF

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲍凯印Fox

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值