PiStats安装与使用教程

PiStats安装与使用教程

PiStats macOS app to visualize Pi-hole information 项目地址: https://gitcode.com/gh_mirrors/pi/PiStats

1. 项目介绍

PiStats 是一个专为 macOS 用户设计的小巧应用程序,它能够让你直观地监控和管理你的 Pi-hole 系统。通过集成在菜单栏,PiStats 提供便捷的方式查看和控制你的 Pi-hole 状态,无需频繁打开浏览器访问后台界面。此项目遵循 BSD-2-Clause 许可证,体现了开源精神。

2. 项目快速启动

安装准备

确保你的 macOS 设备已经更新至 Catalina 或更高版本,因为 PiStats 基于 SwiftUI 开发,这要求较新的操作系统支持。

获取源码

首先,你需要从 GitHub 克隆 PiStats 的仓库到本地:

git clone https://github.com/Bunn/PiStats.git

编译与运行

  1. 打开 PiStats.xcodeproj 文件,使用 Xcode。
  2. 在 Xcode 中配置你的开发者信息(如果需要)并确保你有正确的环境来编译macOS应用。
  3. 前往 Xcode 的产品菜单,选择清理构建文件(Product > Clean Build Folder)以确保没有旧的编译缓存干扰。
  4. 然后,点击运行按钮(▶️),Xcode 将构建应用并在模拟器或连接的设备上启动 PiStats(如果选择部署到设备)。

配置与使用

首次运行应用后,你需要在设置中输入你的 Pi-hole 的认证令牌,以便启用禁用功能:

  • 方法一:找到你的 Pi-hole 服务器上的 /etc/pihole/setupVars.conf 文件,并查找 WEBPASSWORD
  • 方法二:在 Pi-hole 的 Web UI 设置里,前往 API 栏目,显示 API Token。

3. 应用案例与最佳实践

  • 日常网络流量监控: 利用 PiStats 监控广告拦截情况,定期检查被阻止的DNS查询数量,以评估网络健康度。
  • 家庭网络管理: 结合家长控制,通过 Pi-hole 和 PiStats 管理孩子对特定网站的访问。
  • 自动化脚本集成: 可以结合 Shell 脚本自动化数据收集,用于长期分析或报警触发。

最佳实践

  • 定期更换或更新API Token,增强安全性。
  • 使用 PiStats 监视 Pi-hole 性能,确保其正常运作,特别是在高流量时段。
  • 对于多台 Pi-hole 实例管理,逐一添加配置,利用 PiStats 进行集中监控。

4. 典型生态项目

虽然该教程主要关注 PiStats,但值得一提的是其与 Pi-hole 生态系统的紧密联系。例如,对于iOS用户,开发者还提供了“SwiftHole”作为移动端的选择,同样开放源代码,使得跨平台管理成为可能。此外,社区中的许多其他工具和脚本也可以与 Pi-hole 结合,实现更高级的网络管理和数据分析,促进家庭或小型办公网络的智能维护。


请注意,实际操作时要确保你有足够的权限和理解每一项修改的影响,避免不必要的系统或数据问题。PiStats 提供了一个直观而强大的界面,帮助你更好地掌握你的网络状况。

PiStats macOS app to visualize Pi-hole information 项目地址: https://gitcode.com/gh_mirrors/pi/PiStats

基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码,个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+G
基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档~ 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傅尉艺Maggie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值