Deequ:基于Apache Spark的数据质量检测工具
Deequ 是一个构建在 Apache Spark 之上的开源库,主要使用 Scala 编程语言。该项目的目的是通过定义“数据单元测试”,来衡量大规模数据集的数据质量。
项目基础介绍
Deequ 提供了一套用于定义和验证数据质量规则的工具,帮助开发者和数据工程师确保数据符合预期的质量标准。通过将数据质量检查集成到数据管道中,可以及早发现错误,避免错误数据对下游应用或机器学习算法造成影响。
核心功能
Deequ 的核心功能包括:
- 数据完整性检查:确保数据的非空、唯一性和一致性。
- 数据值检查:验证数据值是否在预期范围内,如非负数检查、包含特定值的检查等。
- 数据分布检查:分析数据的分布,如中位数、分位数等,以确保数据分布符合预期。
- 自定义约束:允许用户定义自己的数据质量约束。
Deequ 通过 Spark DataFrame 来处理数据,支持 CSV 文件、数据库表、日志文件和扁平化的 JSON 文件等多种格式。
最近更新的功能
最近,Deequ 项目更新了以下功能:
- 持久化和查询数据度量:通过 MetricsRepository,可以持久化计算得出的数据度量,并支持查询。
- 数据质量度量随时间变化的异常检测:通过分析数据质量度量的历史变化,来检测潜在的数据质量异常。
- 对大规模数据集的数据质量约束自动建议:根据数据集的特征自动建议适用的数据质量约束。
- 对增长数据的增量度量计算和分区数据的度量更新:支持对不断增长的数据集进行增量度量计算,以及在分区数据上更新度量。
这些更新功能进一步增强了 Deequ 的数据质量控制能力,使其成为处理大规模数据集时确保数据质量的强大工具。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考