Deequ:基于Apache Spark的数据质量检测工具

Deequ:基于Apache Spark的数据质量检测工具

deequ awslabs/deequ: Deequ是由AWS实验室开发的一款开源库,专为Apache Spark设计,用于数据质量检查和约束验证。通过Deequ,用户可以轻松定义数据集的质量标准并自动评估其是否满足这些标准。 deequ 项目地址: https://gitcode.com/gh_mirrors/de/deequ

Deequ 是一个构建在 Apache Spark 之上的开源库,主要使用 Scala 编程语言。该项目的目的是通过定义“数据单元测试”,来衡量大规模数据集的数据质量。

项目基础介绍

Deequ 提供了一套用于定义和验证数据质量规则的工具,帮助开发者和数据工程师确保数据符合预期的质量标准。通过将数据质量检查集成到数据管道中,可以及早发现错误,避免错误数据对下游应用或机器学习算法造成影响。

核心功能

Deequ 的核心功能包括:

  • 数据完整性检查:确保数据的非空、唯一性和一致性。
  • 数据值检查:验证数据值是否在预期范围内,如非负数检查、包含特定值的检查等。
  • 数据分布检查:分析数据的分布,如中位数、分位数等,以确保数据分布符合预期。
  • 自定义约束:允许用户定义自己的数据质量约束。

Deequ 通过 Spark DataFrame 来处理数据,支持 CSV 文件、数据库表、日志文件和扁平化的 JSON 文件等多种格式。

最近更新的功能

最近,Deequ 项目更新了以下功能:

  • 持久化和查询数据度量:通过 MetricsRepository,可以持久化计算得出的数据度量,并支持查询。
  • 数据质量度量随时间变化的异常检测:通过分析数据质量度量的历史变化,来检测潜在的数据质量异常。
  • 对大规模数据集的数据质量约束自动建议:根据数据集的特征自动建议适用的数据质量约束。
  • 对增长数据的增量度量计算和分区数据的度量更新:支持对不断增长的数据集进行增量度量计算,以及在分区数据上更新度量。

这些更新功能进一步增强了 Deequ 的数据质量控制能力,使其成为处理大规模数据集时确保数据质量的强大工具。

deequ awslabs/deequ: Deequ是由AWS实验室开发的一款开源库,专为Apache Spark设计,用于数据质量检查和约束验证。通过Deequ,用户可以轻松定义数据集的质量标准并自动评估其是否满足这些标准。 deequ 项目地址: https://gitcode.com/gh_mirrors/de/deequ

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杭臣磊Sibley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值