TorchANI 开发者指南

TorchANI 开发者指南

torchani Accurate Neural Network Potential on PyTorch torchani 项目地址: https://gitcode.com/gh_mirrors/to/torchani

1. 项目介绍

TorchANI 是一个基于 PyTorch 的 ANI(AtomNetted Neural Network)神经网络的开源实现。ANI 是一种用于分子模拟的深度学习模型,能够准确预测分子间的相互作用力和性质。TorchANI 目前处于 alpha 版本,API 可能尚未稳定。若在使用过程中发现错误或需要新功能,可以在 GitHub 上提交 issue 或 pull request。

2. 项目快速启动

环境准备

TorchANI 需要 PyTorch 的最新预览版。请先按照 PyTorch 官方网站的指导安装最新版本的 PyTorch。

安装 TorchANI

安装正确版本的 PyTorch 后,可以使用 pip 或 conda 安装 TorchANI:

pip install torchani

或者

conda install -c conda-forge torchani

运行测试和示例

为了运行测试和示例,需要手动下载一个数据包:

./download.sh

3. 应用案例和最佳实践

AEV CUDA 扩展(可选)

为了加速 AEV(Atom Environment Vector)的前向和反向传播,可以选择安装 AEV CUDA 扩展。具体安装指导可以在 torchani/cuaev 文件夹中找到。

文档构建

安装完 TorchANI 后,可以通过以下命令构建文档:

sphinx-build docs build

确保安装了所有依赖:

pip install -r docs_requirements.txt

单元测试

手动运行单元测试,可以使用以下命令:

pytest -v

4. 典型生态项目

TorchANI 是一个活跃的开源项目,其生态系统包括但不限于以下项目:

  • ASE_ANI:用于访问 ANI 模型参数的仓库。
  • ani-model-zoo:包含所有 ANI 模型参数的仓库。

开发者在使用和贡献至 TorchANI 时,应当遵循项目的开发规范,确保代码质量,并通过 GitHub 提交 pull request。所有的更改都需要通过代码审查,并在合并前通过所有测试。

以上就是关于 TorchANI 的开发者指南,希望对您有所帮助。

torchani Accurate Neural Network Potential on PyTorch torchani 项目地址: https://gitcode.com/gh_mirrors/to/torchani

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杭臣磊Sibley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值