TorchANI 开发者指南
1. 项目介绍
TorchANI 是一个基于 PyTorch 的 ANI(AtomNetted Neural Network)神经网络的开源实现。ANI 是一种用于分子模拟的深度学习模型,能够准确预测分子间的相互作用力和性质。TorchANI 目前处于 alpha 版本,API 可能尚未稳定。若在使用过程中发现错误或需要新功能,可以在 GitHub 上提交 issue 或 pull request。
2. 项目快速启动
环境准备
TorchANI 需要 PyTorch 的最新预览版。请先按照 PyTorch 官方网站的指导安装最新版本的 PyTorch。
安装 TorchANI
安装正确版本的 PyTorch 后,可以使用 pip 或 conda 安装 TorchANI:
pip install torchani
或者
conda install -c conda-forge torchani
运行测试和示例
为了运行测试和示例,需要手动下载一个数据包:
./download.sh
3. 应用案例和最佳实践
AEV CUDA 扩展(可选)
为了加速 AEV(Atom Environment Vector)的前向和反向传播,可以选择安装 AEV CUDA 扩展。具体安装指导可以在 torchani/cuaev 文件夹中找到。
文档构建
安装完 TorchANI 后,可以通过以下命令构建文档:
sphinx-build docs build
确保安装了所有依赖:
pip install -r docs_requirements.txt
单元测试
手动运行单元测试,可以使用以下命令:
pytest -v
4. 典型生态项目
TorchANI 是一个活跃的开源项目,其生态系统包括但不限于以下项目:
- ASE_ANI:用于访问 ANI 模型参数的仓库。
- ani-model-zoo:包含所有 ANI 模型参数的仓库。
开发者在使用和贡献至 TorchANI 时,应当遵循项目的开发规范,确保代码质量,并通过 GitHub 提交 pull request。所有的更改都需要通过代码审查,并在合并前通过所有测试。
以上就是关于 TorchANI 的开发者指南,希望对您有所帮助。