Spider:复杂跨域语义解析与文本到SQL任务的权威数据集

Spider:复杂跨域语义解析与文本到SQL任务的权威数据集

spider scripts and baselines for Spider: Yale complex and cross-domain semantic parsing and text-to-SQL challenge 项目地址: https://gitcode.com/gh_mirrors/spider/spider

项目介绍

Spider是一个大规模的人工标注数据集,专门用于复杂和跨域的语义解析以及文本到SQL任务(自然语言接口用于关系数据库)。该数据集与我们的EMNLP 2018论文一同发布,论文详细介绍了Spider的设计和构建过程。本仓库包含了所有用于评估、预处理以及我们在论文中使用的所有基线模型的代码。如果您想了解更多关于任务的介绍和排行榜信息,请访问任务站点。

项目技术分析

Spider数据集的核心技术在于其复杂的语义解析和文本到SQL的转换能力。数据集包含了大量的自然语言问题及其对应的SQL查询,这些问题和查询覆盖了多个不同的数据库领域,确保了数据集的多样性和挑战性。

数据格式

数据集主要包含以下几个部分:

  • 问题和SQL查询:每个文件包含自然语言问题、问题分词、数据库ID、对应的SQL查询及其分词,以及解析后的SQL结构。
  • 表格信息:包含了数据库中每个表格的原始和规范化名称、列名、列类型、外键和主键等信息。
  • 数据库文件:所有表格内容存储在对应的SQLite3数据库文件中。

评估方法

Spider的评估方法包括组件匹配、精确匹配和执行准确性。组件匹配和精确匹配通过将SQL分解为多个子句,并在每个子句中进行集合比较来评估。执行准确性则通过实际执行SQL查询来验证结果的正确性。

项目及技术应用场景

Spider数据集适用于以下应用场景:

  • 自然语言处理研究:用于开发和评估自然语言到SQL查询的转换模型。
  • 数据库接口开发:用于构建用户友好的数据库查询接口,使用户能够通过自然语言与数据库交互。
  • 跨域语义解析:用于研究和开发能够处理不同领域和复杂查询的语义解析模型。

项目特点

  1. 大规模人工标注:Spider数据集由11名大学生人工标注,确保了数据的高质量和准确性。
  2. 复杂跨域:数据集涵盖了多个不同的数据库领域,能够有效评估模型在跨域环境下的表现。
  3. 多样化的评估方法:提供了组件匹配、精确匹配和执行准确性等多种评估方法,全面评估模型的性能。
  4. 持续更新:数据集和评估方法持续更新,确保其与最新的研究和技术发展保持同步。

Spider数据集为复杂和跨域的语义解析与文本到SQL任务提供了一个权威的基准,是自然语言处理和数据库领域研究的重要资源。无论您是研究人员还是开发者,Spider都将为您的工作提供强有力的支持。

spider scripts and baselines for Spider: Yale complex and cross-domain semantic parsing and text-to-SQL challenge 项目地址: https://gitcode.com/gh_mirrors/spider/spider

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翟苹星Trustworthy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值