使用Audio landmark fingerprinting打造无广告音乐体验

使用Audio landmark fingerprinting打造无广告音乐体验

stream-audio-fingerprintAudio landmark fingerprinting as a Node Stream module项目地址:https://gitcode.com/gh_mirrors/st/stream-audio-fingerprint

音频地标指纹识别作为一个Node.js流模块,为处理音频信号提供了一种创新方式。它能够将PCM音频信号转化为一系列的音频指纹,无论是单个音频轨道还是无限音频流,如广播电台,都能轻松应对。这个项目是Adblock Radio项目的基础之一。

技术剖析

该模块基于声学指纹识别中的地标算法,详细描述可以在Shazam 2003年的论文中找到。实现部分受到D. Ellis在“Robust Landmark-Based Audio Fingerprinting”(2009)中MATLAB程序的启发,但有一个显著差异,即该模块能处理无限长度的音频流,而不仅仅是已完成的音频文件。

工作流程大致如下:

  1. 音频信号首先被转换成谱图。
  2. 在时间-频率图上选择显著峰值,利用250毫秒的延迟来确定一个峰值是否紧随更大的峰值。
  3. 通过链接峰值形成指纹数据,这些数据可以插入数据库或与其他指纹进行比较。

Spectrogram, peaks and pairs Threshold and peaks

这两张图展示了选择的峰值和内部的阈值选择策略,以防止峰度过近的时间和频率。

应用场景

  1. 实时广播广告检测 - 如Adblock Radio项目,通过匹配指纹库中的广告指纹,实现广播广告的自动跳过。
  2. 音乐识别 - 类似于Shazam的应用,帮助用户识别听到的未知歌曲。
  3. 音轨质量比对 - 对不同来源的同一音轨进行指纹对比,确保一致性。

特点

  1. 流式处理 - 可处理无限长度的音频流,适应广播电台等实时音频源。
  2. 高效指纹提取 - 利用地标算法,快速准确地从音频中提取指纹。
  3. 灵活集成 - 提供简单的API接口,易于与其他系统或数据库集成。
  4. 跨平台支持 - 依赖于ffmpeg工具,可在多种操作系统上运行。

快速开始

安装该项目:

npm install stream-audio-fingerprint

通过以下代码示例使用ffmpeg进行解码并应用指纹生成器:

const childProcess = require('child_process');
const { Codegen } = require('stream-audio-fingerprint');

// ... 省略部分代码 ...

然后,你可以从任何音频源(如URL或本地文件)获取音频,并将其输入到你的脚本中。

结论

stream-audio-fingerprint是一个强大的工具,对于处理音频流尤其是实时广播有极大的潜力。无论你是要构建一款音乐识别应用,还是希望优化广告过滤服务,它都值得你加入到你的技术栈中。现在就动手试试,开启你的音频指纹之旅吧!

License见LICENSE文件。

stream-audio-fingerprintAudio landmark fingerprinting as a Node Stream module项目地址:https://gitcode.com/gh_mirrors/st/stream-audio-fingerprint

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

房耿园Hartley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值