使用Audio landmark fingerprinting打造无广告音乐体验
音频地标指纹识别作为一个Node.js流模块,为处理音频信号提供了一种创新方式。它能够将PCM音频信号转化为一系列的音频指纹,无论是单个音频轨道还是无限音频流,如广播电台,都能轻松应对。这个项目是Adblock Radio项目的基础之一。
技术剖析
该模块基于声学指纹识别中的地标算法,详细描述可以在Shazam 2003年的论文中找到。实现部分受到D. Ellis在“Robust Landmark-Based Audio Fingerprinting”(2009)中MATLAB程序的启发,但有一个显著差异,即该模块能处理无限长度的音频流,而不仅仅是已完成的音频文件。
工作流程大致如下:
- 音频信号首先被转换成谱图。
- 在时间-频率图上选择显著峰值,利用250毫秒的延迟来确定一个峰值是否紧随更大的峰值。
- 通过链接峰值形成指纹数据,这些数据可以插入数据库或与其他指纹进行比较。
这两张图展示了选择的峰值和内部的阈值选择策略,以防止峰度过近的时间和频率。
应用场景
- 实时广播广告检测 - 如Adblock Radio项目,通过匹配指纹库中的广告指纹,实现广播广告的自动跳过。
- 音乐识别 - 类似于Shazam的应用,帮助用户识别听到的未知歌曲。
- 音轨质量比对 - 对不同来源的同一音轨进行指纹对比,确保一致性。
特点
- 流式处理 - 可处理无限长度的音频流,适应广播电台等实时音频源。
- 高效指纹提取 - 利用地标算法,快速准确地从音频中提取指纹。
- 灵活集成 - 提供简单的API接口,易于与其他系统或数据库集成。
- 跨平台支持 - 依赖于ffmpeg工具,可在多种操作系统上运行。
快速开始
安装该项目:
npm install stream-audio-fingerprint
通过以下代码示例使用ffmpeg
进行解码并应用指纹生成器:
const childProcess = require('child_process');
const { Codegen } = require('stream-audio-fingerprint');
// ... 省略部分代码 ...
然后,你可以从任何音频源(如URL或本地文件)获取音频,并将其输入到你的脚本中。
结论
stream-audio-fingerprint
是一个强大的工具,对于处理音频流尤其是实时广播有极大的潜力。无论你是要构建一款音乐识别应用,还是希望优化广告过滤服务,它都值得你加入到你的技术栈中。现在就动手试试,开启你的音频指纹之旅吧!
License见LICENSE文件。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考