NVIDIA Merlin Dataloader 使用教程

NVIDIA Merlin Dataloader 使用教程

dataloader The merlin dataloader lets you rapidly load tabular data for training deep leaning models with TensorFlow, PyTorch or JAX 项目地址: https://gitcode.com/gh_mirrors/dataloa/dataloader

1. 项目介绍

NVIDIA Merlin Dataloader 是一个用于快速加载表格数据以训练深度学习模型的工具。它支持 TensorFlow、PyTorch 和 JAX,通过 GPU 优化的数据加载器,可以直接将数据读入 GPU,并通过 dlpack 实现 0-copy 传输到 TensorFlow 和 PyTorch。Merlin Dataloader 的主要优势包括:

  • 比原生框架数据加载器快 10 倍以上
  • 处理大于内存的数据集
  • 支持每轮洗牌和分布式训练

2. 项目快速启动

安装

Merlin Dataloader 需要 Python 3.7+ 版本,并且 GPU 支持需要 CUDA 11.0+。可以通过 Conda 或 PyPi 安装:

通过 Conda 安装
conda install -c nvidia -c rapidsai -c numba -c conda-forge merlin-dataloader python=3.7 cudatoolkit=11.2
通过 PyPi 安装
pip install merlin-dataloader

基本使用

以下是一个简单的使用示例,展示如何从 Parquet 文件加载数据并使用 TensorFlow 进行训练:

# 从 Parquet 文件加载数据集
import merlin.io

dataset = merlin.io.Dataset(PARQUET_FILE_PATHS, engine="parquet")

# 创建 TensorFlow 数据加载器,每批次加载 65K 条数据
from merlin.dataloader.tensorflow import Loader

loader = Loader(dataset, batch_size=65536)

# 获取单批次数据,输入将是一个字典,键为列名,值为 TensorFlow 张量
inputs, target = next(loader)

# 使用数据加载器训练 Keras 模型
import tensorflow as tf

model = tf.keras.Model()
model.fit(loader, epochs=5)

3. 应用案例和最佳实践

应用案例

Merlin Dataloader 广泛应用于推荐系统、广告点击预测等需要处理大规模表格数据的场景。例如,在推荐系统中,可以使用 Merlin Dataloader 快速加载用户行为数据,并训练深度学习模型以预测用户对商品的点击率。

最佳实践

  • 数据预处理:在使用 Merlin Dataloader 之前,确保数据已经过适当的预处理,例如缺失值填充、特征工程等。
  • 批量大小优化:根据 GPU 内存大小和模型复杂度,调整批量大小以最大化训练效率。
  • 分布式训练:对于大规模数据集,可以利用 Merlin Dataloader 的分布式训练功能,加速模型训练过程。

4. 典型生态项目

NVIDIA Merlin

NVIDIA Merlin 是一个用于构建和部署大规模推荐系统的开源框架。它包括多个组件,如 NVTabular(用于数据预处理)、HugeCTR(用于训练大规模推荐模型)等。Merlin Dataloader 是 NVIDIA Merlin 生态系统中的重要组成部分,与其他组件协同工作,提供端到端的推荐系统解决方案。

RAPIDS

RAPIDS 是 NVIDIA 推出的开源 GPU 加速数据科学库,涵盖数据加载、数据处理、机器学习等多个领域。Merlin Dataloader 与 RAPIDS 中的其他库(如 cuDF、cuML)无缝集成,提供高效的数据处理和模型训练能力。

通过以上模块的介绍,您可以快速上手并深入了解 NVIDIA Merlin Dataloader 的使用和应用场景。

dataloader The merlin dataloader lets you rapidly load tabular data for training deep leaning models with TensorFlow, PyTorch or JAX 项目地址: https://gitcode.com/gh_mirrors/dataloa/dataloader

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

1. 内容概要 本项目是一个支持科学函数的命令行计算器,兼容 C++98 标准。它实现了中缀表达式词法分析、后缀表达式转换与求值,支持常见数学运算(如幂、三角函数、对数等)与括号优先级解析。程序还提供了角度版三角函数、角度与弧度互转功能,并支持函数调试输出与函数演示模式。 2. 适用人群 * C++ 初中级学习者,特别是希望深入理解表达式求值机制者 * 需要一个可扩展的计算引擎的项目开发者 * 想通过项目实践词法分析、调度场算法、数学函数封装的开发者 * 高校学生课程设计、编译原理实践者 3. 使用场景及目标 * 实现中缀表达式的完整求解器,支持函数嵌套、优先级与结合性处理 * 提供角度与弧度版本的三角函数,以适应不同输入偏好 * 演示中缀转后缀过程,辅助编程教育与算法教学 * 提供科学函数辅助计算,如 `log`, `sqrt`, `abs`, `exp`, `ceil`, `floor` 等 4. 其他说明 * 支持函数:sin, cos, tan(弧度);sind, cosd, tand(角度) * 支持函数嵌套,如 `sin(deg2rad(30))` * 支持操作符:+, -, \*, /, ^, \*\*(幂运算)与括号优先级 * 所有函数均通过 map 注册,方便扩展与自定义 * 输入 `help` 查看支持函数,`demo` 观看转后缀过程,`quit` 退出程序 * 提示用户避免使用 `°` 符号,推荐使用角度函数代替 * 可通过 `g++ calculator.cpp -o calculator -lm` 编译(需链接数学库)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

房耿园Hartley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值