Naive Bayesian Classification for Golang

Naive Bayesian Classification for Golang

bayesian Naive Bayesian Classification for Golang. bayesian 项目地址: https://gitcode.com/gh_mirrors/ba/bayesian

1. 项目介绍

本项目是一个使用Go语言编写的简单贝叶斯分类器库,适用于对字符串集合进行任意数量的类别分类。该库还支持术语频率-逆文档频率(TF-IDF)计算,有助于提高分类的准确性。该库旨在提供一个低入门门槛的贝叶斯分类库,适用于基础分类任务。

2. 项目快速启动

首先,确保你已经安装了Go语言环境。

go get github.com/jbrukh/bayesian
go install

以下是一个快速启动的例子:

package main

import (
	"fmt"
	"github.com/jbrukh/bayesian"
)

func main() {
	// 定义类别
	const (
		Good  bayesian.Class = "Good"
		Bad   bayesian.Class = "Bad"
	)
	
	// 创建分类器
	classifier := bayesian.NewClassifier(Good, Bad)
	
	// 训练数据
	goodStuff := []string{"tall", "rich", "handsome"}
	badStuff := []string{"poor", "smelly", "ugly"}
	
	// 学习数据
	classifier.Learn(goodStuff, Good)
	classifier.Learn(badStuff, Bad)
	
	// 分类新数据
	scores, likely, _ := classifier.LogScores([]string{"tall", "girl"})
	fmt.Printf("Scores: %v, Likely class: %v\n", scores, likely)
}

3. 应用案例和最佳实践

简单分类案例

在下面的例子中,我们将创建一个分类器,用于分类好词和坏词。

// ...(上文快速启动代码)
// 使用分类器进行分类
scores, likely, _ := classifier.ProbScores([]string{"happy", "joyful"})
fmt.Printf("Probabilities: %v, Likely class: %v\n", scores, likely)

使用TF-IDF支持

为了使用TF-IDF,你需要在训练后转换术语频率。

// ...(上文快速启动代码)
// 转换为TF-IDF
classifier.ConvertTermsFreqToTfIdf()
// 使用TF-IDF分类器进行分类
scores, likely, _ := classifier.LogScores([]string{"happy", "joyful"})
fmt.Printf("Scores: %v, Likely class: %v\n", scores, likely)

4. 典型生态项目

目前,该库没有列出具体的生态项目。但是,你可以在各种文本分类任务中使用这个库,例如情感分析、垃圾邮件检测或者任何需要将文本分类到不同类别的场景。开发者可以根据具体需求,结合这个库来构建更加复杂的应用。

bayesian Naive Bayesian Classification for Golang. bayesian 项目地址: https://gitcode.com/gh_mirrors/ba/bayesian

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

房耿园Hartley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值