Naive Bayesian Classification for Golang
bayesian Naive Bayesian Classification for Golang. 项目地址: https://gitcode.com/gh_mirrors/ba/bayesian
1. 项目介绍
本项目是一个使用Go语言编写的简单贝叶斯分类器库,适用于对字符串集合进行任意数量的类别分类。该库还支持术语频率-逆文档频率(TF-IDF)计算,有助于提高分类的准确性。该库旨在提供一个低入门门槛的贝叶斯分类库,适用于基础分类任务。
2. 项目快速启动
首先,确保你已经安装了Go语言环境。
go get github.com/jbrukh/bayesian
go install
以下是一个快速启动的例子:
package main
import (
"fmt"
"github.com/jbrukh/bayesian"
)
func main() {
// 定义类别
const (
Good bayesian.Class = "Good"
Bad bayesian.Class = "Bad"
)
// 创建分类器
classifier := bayesian.NewClassifier(Good, Bad)
// 训练数据
goodStuff := []string{"tall", "rich", "handsome"}
badStuff := []string{"poor", "smelly", "ugly"}
// 学习数据
classifier.Learn(goodStuff, Good)
classifier.Learn(badStuff, Bad)
// 分类新数据
scores, likely, _ := classifier.LogScores([]string{"tall", "girl"})
fmt.Printf("Scores: %v, Likely class: %v\n", scores, likely)
}
3. 应用案例和最佳实践
简单分类案例
在下面的例子中,我们将创建一个分类器,用于分类好词和坏词。
// ...(上文快速启动代码)
// 使用分类器进行分类
scores, likely, _ := classifier.ProbScores([]string{"happy", "joyful"})
fmt.Printf("Probabilities: %v, Likely class: %v\n", scores, likely)
使用TF-IDF支持
为了使用TF-IDF,你需要在训练后转换术语频率。
// ...(上文快速启动代码)
// 转换为TF-IDF
classifier.ConvertTermsFreqToTfIdf()
// 使用TF-IDF分类器进行分类
scores, likely, _ := classifier.LogScores([]string{"happy", "joyful"})
fmt.Printf("Scores: %v, Likely class: %v\n", scores, likely)
4. 典型生态项目
目前,该库没有列出具体的生态项目。但是,你可以在各种文本分类任务中使用这个库,例如情感分析、垃圾邮件检测或者任何需要将文本分类到不同类别的场景。开发者可以根据具体需求,结合这个库来构建更加复杂的应用。
bayesian Naive Bayesian Classification for Golang. 项目地址: https://gitcode.com/gh_mirrors/ba/bayesian