VLM-R1 项目安装与配置指南

VLM-R1 项目安装与配置指南

VLM-R1 Solve Visual Understanding with Reinforced VLMs VLM-R1 项目地址: https://gitcode.com/gh_mirrors/vl/VLM-R1

1. 项目基础介绍

VLM-R1 是一个开源项目,旨在提供一个稳定且通用的视觉-语言模型。该项目基于 R1-style 大型视觉-语言模型,适用于各种任务,如指代表达式理解(Referring Expression Comprehension, REC)、开放词汇检测(Open-Vocabulary Detection, OVD)和多模态数学推理等。

主要编程语言:Python

2. 项目使用的关键技术和框架

  • 深度学习框架:使用 PyTorch 进行模型的训练和推理。
  • 模型训练:采用基于强化学习的训练方法,包括 GRPO(Generalized Referenced Point Optimization)和 LoRA(Low-Rank Adaptation)微调技术。
  • 数据集:使用 RefCOCO/+/g 和 LISA-Grounding 数据集进行训练和评估。

3. 项目安装和配置的准备工作

在开始安装之前,请确保您的系统满足以下要求:

  • Python 3.10
  • CUDA(用于GPU加速)
  • conda(用于环境管理)

详细安装步骤

步骤 1:创建 Python 环境

打开命令行,创建一个新的 Python 环境:

conda create -n vlm-r1 python=3.10
conda activate vlm-r1
步骤 2:安装依赖

在激活的环境中,运行以下命令安装项目所需的依赖:

bash setup.sh
步骤 3:准备数据集

下载 COCO Train2014 图像数据和 RefCOCO/+/g 以及 LISA-Grounding 注释文件。将图像数据解压后放在一个目录中,并将注释文件的路径写入 src/open-r1-multimodal/data_config/rec.yaml 文件:

datasets:
- json_path: /path/to/refcoco_train.json
- json_path: /path/to/refcocop_train.json
- json_path: /path/to/refcocog_train.json
步骤 4:开始训练

在准备好数据后,可以使用以下命令开始训练:

bash src/open-r1-multimodal/run_scripts/run_grpo_rec.sh

如果遇到内存不足的问题,可以尝试以下方法之一:

  • 设置 gradient_checkpointingtrue
  • 减少 per_device_train_batch_size
  • 使用 LoRA 微调
步骤 5:多节点训练

如果需要进行多节点训练,可以参考项目中的 multinode_training_demo.sh 脚本进行配置。

以上就是 VLM-R1 项目的详细安装和配置指南。按照以上步骤,即使是编程小白也可以顺利完成安装并开始使用该项目。

VLM-R1 Solve Visual Understanding with Reinforced VLMs VLM-R1 项目地址: https://gitcode.com/gh_mirrors/vl/VLM-R1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岑晔含Dora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值