VLM-R1 项目安装与配置指南
1. 项目基础介绍
VLM-R1 是一个开源项目,旨在提供一个稳定且通用的视觉-语言模型。该项目基于 R1-style 大型视觉-语言模型,适用于各种任务,如指代表达式理解(Referring Expression Comprehension, REC)、开放词汇检测(Open-Vocabulary Detection, OVD)和多模态数学推理等。
主要编程语言:Python
2. 项目使用的关键技术和框架
- 深度学习框架:使用 PyTorch 进行模型的训练和推理。
- 模型训练:采用基于强化学习的训练方法,包括 GRPO(Generalized Referenced Point Optimization)和 LoRA(Low-Rank Adaptation)微调技术。
- 数据集:使用 RefCOCO/+/g 和 LISA-Grounding 数据集进行训练和评估。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统满足以下要求:
- Python 3.10
- CUDA(用于GPU加速)
- conda(用于环境管理)
详细安装步骤
步骤 1:创建 Python 环境
打开命令行,创建一个新的 Python 环境:
conda create -n vlm-r1 python=3.10
conda activate vlm-r1
步骤 2:安装依赖
在激活的环境中,运行以下命令安装项目所需的依赖:
bash setup.sh
步骤 3:准备数据集
下载 COCO Train2014 图像数据和 RefCOCO/+/g 以及 LISA-Grounding 注释文件。将图像数据解压后放在一个目录中,并将注释文件的路径写入 src/open-r1-multimodal/data_config/rec.yaml
文件:
datasets:
- json_path: /path/to/refcoco_train.json
- json_path: /path/to/refcocop_train.json
- json_path: /path/to/refcocog_train.json
步骤 4:开始训练
在准备好数据后,可以使用以下命令开始训练:
bash src/open-r1-multimodal/run_scripts/run_grpo_rec.sh
如果遇到内存不足的问题,可以尝试以下方法之一:
- 设置
gradient_checkpointing
为true
- 减少
per_device_train_batch_size
- 使用 LoRA 微调
步骤 5:多节点训练
如果需要进行多节点训练,可以参考项目中的 multinode_training_demo.sh
脚本进行配置。
以上就是 VLM-R1 项目的详细安装和配置指南。按照以上步骤,即使是编程小白也可以顺利完成安装并开始使用该项目。