探秘高效OCR之路:基于YOLO算法的Keras-TensorFlow文本检测器

探秘高效OCR之路:基于YOLO算法的Keras-TensorFlow文本检测器

Text-Detection-using-Yolo-Algorithm-in-keras-tensorflow Implemented the YOLO algorithm for scene text detection in keras-tensorflow (No object detection API used) The code can be tweaked to train for a different object detection task using YOLO. 项目地址: https://gitcode.com/gh_mirrors/te/Text-Detection-using-Yolo-Algorithm-in-keras-tensorflow

在构建一个强大的光学字符识别(OCR)系统时,定位特定文本的位置是至关重要的第一步。这里我们向您推荐一个开源项目——Text-Detection-using-Yolo-Algorithm-in-keras-tensorflow,该项目从零实现了一个专门用于场景文本检测的YOLO(You Only Look Once)算法,采用Python编程语言,利用Keras和TensorFlow库。

项目介绍

这个项目实现了YOLO算法的原始版,没有依赖任何对象检测API。它所使用的数据集来自ICDAR竞赛,包括376个训练图像和115个验证图像。通过预处理步骤,图像被调整为(512,512)的尺寸,并进行归一化处理,以便于模型处理。同时,针对目标框的地面真相数据也进行了相应的修改。

技术分析

预处理: 代码中的Preprocess.py文件负责所有必要的预处理工作,将数据保存为numpy数组。这包括图像的重采样、尺寸调整以及对目标框的处理。

模型结构: 项目选择了MobileNetV2作为特征提取器,因为它的准确度高且权重较少。移除了MobileNet的全连接层,添加了三个卷积层以产生符合要求的输出形状(网格高度,网格宽度,1,5)。

损失函数与训练: 遵循YOLO论文中定义的损失函数,由于只有一个类别的预测,所以剔除了类别预测对损失的贡献。模型以4个样本的批量大小训练了180个周期,初始学习率为0.001,之后的80个周期降低到0.0001。

推断过程Utils.py包含了将模型输出转换为实际预测边界框所需的函数。非极大值抑制技术用于消除同一物体上的重复框,以提高预测的准确性。

应用场景

这个项目广泛适用于任何需要文本检测的应用,比如自动文档解析、图像搜索、安全监控等。通过识别图像中的文本,可以进一步实现文字翻译、关键词抽取等任务。

项目特点

  1. 纯手工实现: 不依赖任何现成的对象检测框架,完全自定义实现YOLO算法。
  2. 高效模型: 利用MobileNetV2作为基础架构,兼顾准确性和计算效率。
  3. 自适应数据处理: 针对不同数据集可轻松定制的预处理步骤。
  4. 清晰可读的代码: 易于理解和复用,有助于开发者学习和进阶。

如果你正在寻找一个用于文本检测的解决方案,或者想要深入理解YOLO算法的实际应用,这个项目无疑是不容错过的选择。赶快尝试并体验其强大功能吧!

Text-Detection-using-Yolo-Algorithm-in-keras-tensorflow Implemented the YOLO algorithm for scene text detection in keras-tensorflow (No object detection API used) The code can be tweaked to train for a different object detection task using YOLO. 项目地址: https://gitcode.com/gh_mirrors/te/Text-Detection-using-Yolo-Algorithm-in-keras-tensorflow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎情卉Desired

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值