WhereHows 开源数据目录系统指南
datahub项目地址:https://gitcode.com/gh_mirrors/datahub/datahub
项目介绍
WhereHows 是由 LinkedIn 开发并维护的一款开源数据目录系统,专注于大数据管理领域,提供数据发现、血缘追踪以及元数据管理功能。它设计用于帮助企业管理和理解其复杂的数据生态系统,通过一个集中式的平台记录和检索不同数据集的信息。WhereHows 支持多种数据存储和处理系统,如 Hadoop HDFS、Apache Hive、Oracle 等,使数据团队能够高效地探索、理解和利用组织内部的数据资源。
项目快速启动
要快速启动 WhereHows 项目,首先确保你的开发环境中安装了必要的依赖项,如 Java JDK 8 或更高版本,Maven 以及 Docker(可选,如果想使用预打包的Docker镜像来简化部署)。
本地部署步骤:
-
克隆仓库:
git clone https://github.com/linkedin/WhereHows.git
-
构建项目: 进入项目根目录并运行 Maven 来构建项目。
cd WhereHows mvn clean install -DskipTests
-
配置数据库: WhereHows 使用数据库存储元数据。你需要准备 MySQL 或其他支持的数据库,并配置
conf/application.conf
文件中的数据库连接信息。 -
启动服务: 构建成功后,可以通过以下命令启动 WhereHows 应用。
假设您已完成数据库配置,则可以在项目根目录下执行:
sh wherehows-web/bin/start.sh
同时,启动数据采集服务(如果需要):
sh wherehows-etl/bin/start.sh
完成上述步骤后,WhereHows 应该已经运行在默认端口上,你可以通过浏览器访问它。
应用案例和最佳实践
WhereHows 被广泛应用于大型企业中,帮助解决元数据管理难题。最佳实践中包括:
- 数据治理: 使用 WhereHows 确定数据来源、了解数据流动性和变更历史,增强数据的信任度。
- 数据发现: 数据工程师和分析师可以基于详细的元数据搜索到他们需要的数据表和数据管道。
- 自动化元数据更新: 结合工作流工具自动捕获和更新元数据,减少手动维护的工作量。
典型生态项目
虽然WhereHows本身就是一个强大的元数据管理解决方案,但在实际应用中,它常与数据湖、数据仓库和其他数据分析工具集成。例如,结合Apache Kafka可以实现实时元数据更新,或者与Airflow等调度器协同工作,实现元数据管理流程的自动化。此外,当与LinkedIn自家的DataHub或类似的现代数据栈工具一起使用时,可以进一步增强数据发现和治理能力,形成更全面的数据生态系统管理方案。
请注意,随着时间推移,具体的功能和最佳实践可能会有所变化,建议参考最新的官方文档以获取最准确的信息。