Shotlooter 项目使用教程
1. 项目的目录结构及介绍
Shotlooter 项目的目录结构如下:
shotlooter/
├── examples/
│ └── img/
├── output/
├── LICENSE
├── README.md
├── keywords.txt
├── requirements.txt
└── shotlooter.py
目录结构介绍
- examples/: 包含示例图片的文件夹。
- img/: 存放用于图像匹配的小图片。
- output/: 存放输出结果的文件夹,包括敏感数据检测结果的 CSV 文件和包含敏感数据的截图。
- LICENSE: 项目的许可证文件,采用 BSD-3-Clause 许可证。
- README.md: 项目的介绍文档,包含项目的功能、使用方法和安装步骤。
- keywords.txt: 包含用于敏感数据检测的关键词列表。
- requirements.txt: 列出了项目所需的 Python 依赖库。
- shotlooter.py: 项目的启动文件,包含了主要的逻辑代码。
2. 项目的启动文件介绍
shotlooter.py
shotlooter.py
是 Shotlooter 项目的启动文件,负责执行敏感数据检测的主要逻辑。以下是该文件的主要功能模块:
- 图像下载: 根据给定的图像 ID,迭代下载图像。
- OCR 处理: 使用 Tesseract OCR 库将图像中的文本转换为字符串。
- 敏感数据检测:
- 搜索预定义的关键词(如
private_key
,smtp_pass
,access key
等)。 - 检测高熵字符串(通常用于 API 密钥等敏感数据)。
- 使用 OpenCV 进行模板匹配,检测小图像(如 Lastpass 图标)。
- 搜索预定义的关键词(如
- 结果保存: 将检测到的敏感数据保存到 CSV 文件中,并将包含敏感数据的图像保存到
output
文件夹。
使用示例
python3 shotlooter.py --code PRNT_SC_ID
该命令会根据给定的图像 ID 进行敏感数据检测,并输出结果。
3. 项目的配置文件介绍
keywords.txt
keywords.txt
文件包含了用于敏感数据检测的关键词列表。用户可以根据需要添加或修改关键词,以适应不同的检测需求。
requirements.txt
requirements.txt
文件列出了项目所需的 Python 依赖库。用户可以通过以下命令安装这些依赖:
pip3 install -r requirements.txt
README.md
README.md
文件是项目的介绍文档,包含了项目的功能、使用方法和安装步骤。用户在开始使用项目之前,应仔细阅读该文档,以了解项目的详细信息。
LICENSE
LICENSE
文件是项目的许可证文件,采用 BSD-3-Clause 许可证。用户在使用该项目时,应遵守该许可证的规定。
通过以上介绍,您应该对 Shotlooter 项目的目录结构、启动文件和配置文件有了基本的了解。希望这份教程能帮助您顺利使用该项目进行敏感数据检测。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考