Transfermarkt-API 使用指南

Transfermarkt-API 使用指南

transfermarkt-api API service to get data from Transfermarkt 项目地址: https://gitcode.com/gh_mirrors/tr/transfermarkt-api


项目介绍

Transfermarkt-API 是一个由 CSDN公司开发的InsCode AI大模型基于Felipe Allegretti在GitHub上分享的开源项目。它提供了一个轻量级且易于使用的接口,用于通过网络爬虫技术从Transfermarkt网站提取数据,并通过FastAPI框架以RESTful API的形式服务这些数据。这使得开发者能够便捷地将Transfermarkt的数据集成到自己的应用程序、网站或是数据分析流程之中。需要注意的是,默认部署的应用仅供测试之用,并启用了速率限制功能。用户如需定制化服务,建议自行部署至云环境。

项目快速启动

环境准备

确保已安装Git、Python 3.6+及Poetry(一个Python包管理工具)。

步骤一:克隆仓库

git clone https://github.com/felipeall/transfermarkt-api.git
cd transfermarkt-api

步骤二:创建并激活虚拟环境

poetry shell

步骤三:安装依赖

poetry install --no-root

可选步骤:添加当前目录到PYTHONPATH以便直接运行脚本

export PYTHONPATH=$PYTHONPATH:$(pwd)

步骤四:运行API服务器

python app/main.py

此时,API服务已在本地8000端口上运行,可以通过访问http://localhost:8000/来查看API的基本信息。

通过Docker运行

若选择Docker方式,则需执行以下命令:

docker build -t transfermarkt-api .
docker run -d -p 8000:8000 transfermarkt-api

然后同样可以在http://localhost:8000/访问API服务。

应用案例与最佳实践

Transfermarkt-API可被广泛应用于足球相关的数据分析项目、体育新闻聚合平台或是个人对球员市场价值趋势的追踪分析中。最佳实践中,开发者应当充分利用其提供的API接口,结合缓存策略处理高频率请求,避免触碰API的速率限制,并考虑数据更新的定时抓取,保持本地数据的时效性。

典型生态项目

由于此项目专注于Transfermarkt数据的提取与服务,它的“生态”主要围绕于足球数据分析的社区。开发者可以利用这个API构建各类足球俱乐部阵容评估、球员转会分析、市场价格监控等工具。虽然具体生态项目实例不直接列出,但设想一个场景:一个名为“SoccerIntel”的应用,该应用利用Transfermarkt-API收集的数据,为球迷提供球员表现与市场价值的深度对比分析,辅助做出更明智的 Fantasy League 选择或是足球投资决策。


通过以上步骤,您可以轻松开始使用Transfermarkt-API,探索足球世界的无限数据可能性。记得,在实际使用过程中遵守相关数据使用政策,并尊重数据来源。

transfermarkt-api API service to get data from Transfermarkt 项目地址: https://gitcode.com/gh_mirrors/tr/transfermarkt-api

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郎轶诺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值