Collections-C 项目教程

Collections-C 项目教程

Collections-C A library of generic data structures. 项目地址: https://gitcode.com/gh_mirrors/co/Collections-C

1. 项目的目录结构及介绍

Collections-C 是一个用于 C 语言的通用数据结构库。项目的目录结构如下:

Collections-C/
├── AUTHORS
├── CMakeLists.txt
├── CMakeSettings.json
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── COPYING
├── README.md
├── examples/
│   └── ...
├── src/
│   └── ...
└── test/
    └── ...

目录结构介绍

  • AUTHORS: 项目作者信息。
  • CMakeLists.txt: CMake 构建配置文件。
  • CMakeSettings.json: CMake 设置文件。
  • CODE_OF_CONDUCT.md: 行为准则文件。
  • CONTRIBUTING.md: 贡献指南文件。
  • COPYING: 许可证文件。
  • README.md: 项目介绍和使用说明。
  • examples/: 示例代码目录。
  • src/: 源代码目录,包含各种数据结构的实现。
  • test/: 测试代码目录,包含单元测试和集成测试。

2. 项目的启动文件介绍

Collections-C 项目没有传统意义上的“启动文件”,因为它是一个库项目,主要提供数据结构和相关功能的实现。用户在使用时需要包含相应的头文件并调用库中的函数。

例如,使用 CC_Array 动态数组时,需要包含头文件 cc_array.h

#include <collectc/cc_array.h>

然后可以调用 cc_array_new 函数来创建一个新的动态数组:

CC_Array *array;
if (cc_array_new(&array) != CC_OK) {
    // 处理错误
}

3. 项目的配置文件介绍

Collections-C 项目主要通过 CMake 进行构建和配置。主要的配置文件是 CMakeLists.txt

CMakeLists.txt

CMakeLists.txt 文件定义了项目的构建规则和依赖关系。以下是一些关键配置项:

  • 项目名称: 定义项目名称。
  • 源文件: 指定源文件和头文件的路径。
  • 编译选项: 设置编译器选项和链接库。
  • 安装路径: 定义库和头文件的安装路径。

示例 CMakeLists.txt 文件内容:

cmake_minimum_required(VERSION 3.5)
project(Collections-C)

set(CMAKE_C_STANDARD 99)

# 添加源文件
file(GLOB_RECURSE SRC_FILES src/*.c)
file(GLOB_RECURSE HEADER_FILES src/*.h)

# 添加库
add_library(collectc ${SRC_FILES})

# 安装库和头文件
install(TARGETS collectc
        LIBRARY DESTINATION lib
        ARCHIVE DESTINATION lib)
install(FILES ${HEADER_FILES} DESTINATION include/collectc)

通过这个配置文件,用户可以使用 CMake 生成构建文件并编译项目。

其他配置文件

  • CMakeSettings.json: 用于 Visual Studio 的 CMake 配置文件。
  • CONTRIBUTING.md: 贡献指南,包含如何参与项目开发的说明。
  • CODE_OF_CONDUCT.md: 行为准则,定义了项目社区的行为规范。

这些配置文件帮助用户了解项目的构建和使用方式,并指导如何参与项目的开发和维护。

Collections-C A library of generic data structures. 项目地址: https://gitcode.com/gh_mirrors/co/Collections-C

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郎轶诺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值