JSON Logging Python 使用教程
项目介绍
json-logging-python
是一个云原生分布式 Python 日志库,旨在生成易于由日志基础设施(如 ELK、EFK、AWS CloudWatch、GCP Stackdriver 等)索引和搜索的 JSON 日志。该项目支持非 Web 应用和 Web 应用(如 FastAPI)的日志记录,并提供了丰富的配置选项。
项目快速启动
安装
首先,通过 pip 安装 json-logging-python
:
pip install python-json-logger
非 Web 应用日志
以下是一个简单的非 Web 应用日志记录示例:
import json_logging
import logging
import sys
# 初始化日志记录器,不带 Web 框架名称
json_logging.init_non_web(enable_json=True)
# 获取日志记录器实例
logger = logging.getLogger("test-logger")
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
# 记录日志
logger.info("测试日志记录")
Web 应用日志(FastAPI)
以下是一个 FastAPI 应用的日志记录示例:
from fastapi import FastAPI
import json_logging
import logging
import sys
app = FastAPI()
# 初始化 FastAPI 日志记录
json_logging.init_fastapi(enable_json=True)
json_logging.init_request_instrument(app)
# 初始化日志记录器
logger = logging.getLogger("test-logger")
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
@app.get('/')
def home():
logger.info("访问主页")
return {"message": "Hello World"}
应用案例和最佳实践
应用案例
- 云服务监控:使用
json-logging-python
记录日志,并通过 ELK 堆栈进行实时监控和分析。 - 微服务架构:在微服务架构中,每个服务都使用
json-logging-python
记录结构化日志,便于集中管理和故障排查。
最佳实践
- 日志级别管理:根据应用的不同运行阶段(开发、测试、生产)设置合适的日志级别。
- 日志格式统一:确保所有服务的日志格式一致,便于日志聚合和分析。
- 日志轮转:配置日志轮转策略,防止日志文件过大。
典型生态项目
- ELK Stack:Elasticsearch、Logstash 和 Kibana 的组合,用于日志的收集、存储、搜索和可视化。
- EFK Stack:Elasticsearch、Fluentd 和 Kibana 的组合,与 ELK 类似,但使用 Fluentd 作为日志收集器。
- AWS CloudWatch:亚马逊云服务的日志管理和监控服务。
- GCP Stackdriver:谷歌云平台的日志管理和监控服务。
通过结合这些生态项目,json-logging-python
可以实现更强大的日志管理和分析功能。